Erik Bédos, S. Kaliszewski, John Quigg, Jonathan Turk
{"title":"Coactions on (C^*)-Algebras and Universal Properties","authors":"Erik Bédos, S. Kaliszewski, John Quigg, Jonathan Turk","doi":"10.1007/s10485-023-09741-0","DOIUrl":"10.1007/s10485-023-09741-0","url":null,"abstract":"<div><p>It is well-known that the maximalization of a coaction of a locally compact group on a C*-algebra enjoys a universal property. We show how this important property can be deduced from a categorical framework by exploiting certain properties of the maximalization functor for coactions. We also provide a dual proof for the universal property of normalization of coactions.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50013755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deriving Dualities in Pointfree Topology from Priestley Duality","authors":"G. Bezhanishvili, S. Melzer","doi":"10.1007/s10485-023-09739-8","DOIUrl":"10.1007/s10485-023-09739-8","url":null,"abstract":"<div><p>There are several prominent duality results in pointfree topology. Hofmann–Lawson duality establishes that the category of continuous frames is dually equivalent to the category of locally compact sober spaces. This restricts to a dual equivalence between the categories of stably continuous frames and stably locally compact spaces, which further restricts to Isbell duality between the categories of compact regular frames and compact Hausdorff spaces. We show how to derive these dualities from Priestley duality for distributive lattices, thus shedding new light on these classic results.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42602443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extension of Topological Groupoids and Hurewicz Morphisms","authors":"Saikat Chatterjee, Praphulla Koushik","doi":"10.1007/s10485-023-09744-x","DOIUrl":"10.1007/s10485-023-09744-x","url":null,"abstract":"<div><p>In this paper, we introduce the notion of a topological groupoid extension and relate it to the already existing notion of a gerbe over a topological stack. We further study the properties of a gerbe over a Hurewicz (resp. Serre) stack.\u0000\u0000</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09744-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44009957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hopf Monads: A Survey with New Examples and Applications","authors":"Aryan Ghobadi","doi":"10.1007/s10485-023-09732-1","DOIUrl":"10.1007/s10485-023-09732-1","url":null,"abstract":"<div><p>We survey the theory of Hopf monads on monoidal categories, and present new examples and applications. As applications, we utilise this machinery to present a new theory of cross products, as well as analogues of the Fundamental Theorem of Hopf algebras and Radford’s biproduct Theorem for Hopf algebroids. Additionally, we describe new examples of Hopf monads which arise from Galois and Ore extensions of bialgebras. We also classify Lawvere theories whose corresponding monads on the category of sets and functions become Hopf, as well as Hopf monads on the poset of natural numbers.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09732-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41933969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximal Ordered Groupoids and a Galois Correspondence for Inverse Semigroup Orthogonal Actions","authors":"Wesley G. Lautenschlaeger, Thaísa Tamusiunas","doi":"10.1007/s10485-023-09742-z","DOIUrl":"10.1007/s10485-023-09742-z","url":null,"abstract":"<div><p>We introduce maximal ordered groupoids and study some of their properties. Also, we use the Ehresmann–Schein–Nambooripad Theorem, which establishes a one-to-one correspondence between inverse semigroups and a class of ordered groupoids, to prove a Galois correspondence for the case of inverse semigroups acting orthogonally on commutative rings.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44517564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Categorical View of the Partite Lemma in Structural Ramsey Theory","authors":"Sebastian Junge","doi":"10.1007/s10485-023-09733-0","DOIUrl":"10.1007/s10485-023-09733-0","url":null,"abstract":"<div><p>We construct the main object of the Partite Lemma as the colimit over a certain diagram. This gives a purely category theoretic take on the Partite Lemma and establishes the canonicity of the object. Additionally, the categorical point of view allows us to unify the direct Partite Lemma in Nešetřil and Rödl (J Comb Theory Ser A 22(3):289–312, 1977; J Comb Theory Ser A 34(2):183–201, 1983; Discrete Math 75(1–3):327–334, 1989) with the dual Paritite Lemma in Solecki (J Comb Theory Ser A 117(6):704–714, 2010).</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09733-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48305338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weighted Colimits of 2-Representations and Star Algebras","authors":"Mateusz Stroiński","doi":"10.1007/s10485-023-09737-w","DOIUrl":"10.1007/s10485-023-09737-w","url":null,"abstract":"<div><p>We apply the theory of weighted bicategorical colimits to study the problem of existence and computation of such colimits of birepresentations of finitary bicategories. The main application of our results is the complete classification of simple transitive birepresentations of a bicategory studied previously by Zimmermann. The classification confirms a conjecture he has made.\u0000</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09737-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47559798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Presenting Quotient Locales","authors":"Graham Manuell","doi":"10.1007/s10485-023-09736-x","DOIUrl":"10.1007/s10485-023-09736-x","url":null,"abstract":"<div><p>It is often useful to be able to deal with locales in terms of presentations of their underlying frames, or equivalently, the geometric theories which they classify. Given a presentation for a locale, presentations for its sublocales can be obtained by simply appending additional relations, but the case of quotient locales is more subtle. We provide simple procedures for obtaining presentations of open quotients, proper quotients or general triquotients from presentations of the parent locale. The results are proved with the help of the suplattice, preframe and dcpo coverage theorems and applied to obtain presentations of the circle from ones for <span>(mathbb {R})</span> and [0, 1].</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09736-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42361339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Yoneda Lemma for Simplicial Spaces","authors":"Nima Rasekh","doi":"10.1007/s10485-023-09734-z","DOIUrl":"10.1007/s10485-023-09734-z","url":null,"abstract":"<div><p>We study the Yoneda lemma for arbitrary simplicial spaces. We do that by introducing <i>left fibrations</i> of simplicial spaces and studying their associated model structure, the <i>covariant model structure</i>. In particular, we prove a <i>recognition principle</i> for covariant equivalences over an arbitrary simplicial space and <i>invariance</i> of the covariant model structure with respect to complete Segal space equivalences.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09734-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42970719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}