Homotopy Sheaves on Generalised Spaces

IF 0.6 4区 数学 Q3 MATHEMATICS
Severin Bunk
{"title":"Homotopy Sheaves on Generalised Spaces","authors":"Severin Bunk","doi":"10.1007/s10485-023-09754-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study the homotopy right Kan extension of homotopy sheaves on a category to its free cocompletion, i.e. to its category of presheaves. Any pretopology on the original category induces a canonical pretopology of generalised coverings on the free cocompletion. We show that with respect to these pretopologies the homotopy right Kan extension along the Yoneda embedding preserves homotopy sheaves valued in (sufficiently nice) simplicial model categories. Moreover, we show that this induces an equivalence between sheaves of spaces on the original category and colimit-preserving sheaves of spaces on its free cocompletion. We present three applications in geometry and topology: first, we prove that diffeological vector bundles descend along subductions of diffeological spaces. Second, we deduce that various flavours of bundle gerbes with connection satisfy <span>\\((\\infty ,2)\\)</span>-categorical descent. Finally, we investigate smooth diffeomorphism actions in smooth bordism-type field theories on a manifold. We show how these smooth actions allow us to extract the values of a field theory on any object coherently from its values on generating objects of the bordism category.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09754-9.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09754-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We study the homotopy right Kan extension of homotopy sheaves on a category to its free cocompletion, i.e. to its category of presheaves. Any pretopology on the original category induces a canonical pretopology of generalised coverings on the free cocompletion. We show that with respect to these pretopologies the homotopy right Kan extension along the Yoneda embedding preserves homotopy sheaves valued in (sufficiently nice) simplicial model categories. Moreover, we show that this induces an equivalence between sheaves of spaces on the original category and colimit-preserving sheaves of spaces on its free cocompletion. We present three applications in geometry and topology: first, we prove that diffeological vector bundles descend along subductions of diffeological spaces. Second, we deduce that various flavours of bundle gerbes with connection satisfy \((\infty ,2)\)-categorical descent. Finally, we investigate smooth diffeomorphism actions in smooth bordism-type field theories on a manifold. We show how these smooth actions allow us to extract the values of a field theory on any object coherently from its values on generating objects of the bordism category.

Abstract Image

广义空间上的同伦轴
研究了范畴上同伦轴到其自由共补的同伦右侃拓,即到其预轴范畴的同伦右侃拓。原始范畴上的任何预拓扑都可以导出自由共补上的广义覆盖的正则预拓扑。我们证明了对于这些预拓扑,沿Yoneda嵌入的同伦右Kan扩展保留了在(足够好的)简单模型范畴中值的同伦束。此外,我们还证明了这推导出原范畴上的空间束与其自由共补上的保边空间束之间的等价性。在几何和拓扑学上,我们给出了三个应用:首先,我们证明了微分矢量束沿微分空间的俯冲方向下降。其次,我们推断,各种口味的束gerbes与连接满足\((\infty ,2)\) -分类血统。最后,我们研究了流形上光滑bordm型场理论中的光滑微分同胚作用。我们展示了这些平滑的作用如何使我们能够连贯地从生成边界范畴的对象上的值中提取出任何对象上的场论值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信