{"title":"Partialising机构","authors":"Răzvan Diaconescu","doi":"10.1007/s10485-023-09753-w","DOIUrl":null,"url":null,"abstract":"<div><p><span>\\({3/2}\\)</span>-Institutions have been introduced as an extension of institution theory that accommodates implicitly partiality of the signature morphisms together with its syntactic and semantic effects. In this paper we show that ordinary institutions that are equipped with an inclusion system for their categories of signatures generate naturally <span>\\({3/2}\\)</span>-institutions with <i>explicit</i> partiality for their signature morphisms. This provides a general uniform way to build <span>\\({3/2}\\)</span>-institutions for the foundations of conceptual blending and software evolution. Moreover our general construction allows for an uniform derivation of some useful technical properties.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partialising Institutions\",\"authors\":\"Răzvan Diaconescu\",\"doi\":\"10.1007/s10485-023-09753-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>\\\\({3/2}\\\\)</span>-Institutions have been introduced as an extension of institution theory that accommodates implicitly partiality of the signature morphisms together with its syntactic and semantic effects. In this paper we show that ordinary institutions that are equipped with an inclusion system for their categories of signatures generate naturally <span>\\\\({3/2}\\\\)</span>-institutions with <i>explicit</i> partiality for their signature morphisms. This provides a general uniform way to build <span>\\\\({3/2}\\\\)</span>-institutions for the foundations of conceptual blending and software evolution. Moreover our general construction allows for an uniform derivation of some useful technical properties.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09753-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09753-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
\({3/2}\)-Institutions have been introduced as an extension of institution theory that accommodates implicitly partiality of the signature morphisms together with its syntactic and semantic effects. In this paper we show that ordinary institutions that are equipped with an inclusion system for their categories of signatures generate naturally \({3/2}\)-institutions with explicit partiality for their signature morphisms. This provides a general uniform way to build \({3/2}\)-institutions for the foundations of conceptual blending and software evolution. Moreover our general construction allows for an uniform derivation of some useful technical properties.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.