无界代数导数

IF 0.6 4区 数学 Q3 MATHEMATICS
Leovigildo Alonso Tarrío, Beatriz Álvarez Díaz, Ana Jeremías López
{"title":"无界代数导数","authors":"Leovigildo Alonso Tarrío,&nbsp;Beatriz Álvarez Díaz,&nbsp;Ana Jeremías López","doi":"10.1007/s10485-023-09752-x","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the unbounded derived category of a Grothendieck category with enough projective objects is the base category of a derivator whose category of diagrams is the full 2-category of small categories. With this structure, we give a description of the localization functor associated to a specialization closed subset of the spectrum of a commutative noetherian ring. In addition, using the derivator of modules, we prove some basic theorems of group cohomology for complexes of representations over an arbitrary base ring.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded Algebraic Derivators\",\"authors\":\"Leovigildo Alonso Tarrío,&nbsp;Beatriz Álvarez Díaz,&nbsp;Ana Jeremías López\",\"doi\":\"10.1007/s10485-023-09752-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the unbounded derived category of a Grothendieck category with enough projective objects is the base category of a derivator whose category of diagrams is the full 2-category of small categories. With this structure, we give a description of the localization functor associated to a specialization closed subset of the spectrum of a commutative noetherian ring. In addition, using the derivator of modules, we prove some basic theorems of group cohomology for complexes of representations over an arbitrary base ring.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09752-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09752-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有足够投影对象的Grothendieck范畴的无界派生范畴是图的范畴是小范畴的满2范畴的派生子的基范畴。利用这种结构,我们给出了交换诺瑟环谱的专门化闭子集的局部化函子的描述。此外,利用模的导数,证明了任意基环上复表示的群上同调的一些基本定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded Algebraic Derivators

We show that the unbounded derived category of a Grothendieck category with enough projective objects is the base category of a derivator whose category of diagrams is the full 2-category of small categories. With this structure, we give a description of the localization functor associated to a specialization closed subset of the spectrum of a commutative noetherian ring. In addition, using the derivator of modules, we prove some basic theorems of group cohomology for complexes of representations over an arbitrary base ring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信