The European Physical Journal Plus最新文献

筛选
英文 中文
The design and technology development of the JUNO central detector
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-26 DOI: 10.1140/epjp/s13360-024-05830-8
Angel Abusleme, Thomas Adam, Shakeel Ahmad, Rizwan Ahmed, Sebastiano Aiello, Muhammad Akram, Abid Aleem, Tsagkarakis Alexandros, Fengpeng An, Qi An, Giuseppe Andronico, Nikolay Anfimov, Vito Antonelli, Tatiana Antoshkina, Burin Asavapibhop, João Pedro Athayde Marcondes de André, Didier Auguste, Weidong Bai, Nikita Balashov, Wander Baldini, Andrea Barresi, Davide Basilico, Eric Baussan, Marco Bellato, Marco Beretta, Antonio Bergnoli, Daniel Bick, Thilo Birkenfeld, David Blum, Simon Blyth, Anastasia Bolshakova, Mathieu Bongrand, Clément Bordereau, Dominique Breton, Augusto Brigatti, Riccardo Brugnera, Riccardo Bruno, Antonio Budano, Jose Busto, Anatael Cabrera, Barbara Caccianiga, Hao Cai, Xiao Cai, Yanke Cai, Zhiyan Cai, Stéphane Callier, Antonio Cammi, Agustin Campeny, Chuanya Cao, Guofu Cao, Jun Cao, Rossella Caruso, Cédric Cerna, Vanessa Cerrone, Chi Chan, Jinfan Chang, Yun Chang, Guoming Chen, Pingping Chen, Shaomin Chen, Yixue Chen, Yu Chen, Zhiyuan Chen, Zikang Chen, Jie Cheng, Yaping Cheng, Yu Chin Cheng, Alexander Chepurnov, Alexey Chetverikov, Davide Chiesa, Pietro Chimenti, Ziliang Chu, Artem Chukanov, Gérard Claverie, Catia Clementi, Barbara Clerbaux, Marta Colomer Molla, Selma Conforti Di Lorenzo, Alberto Coppi, Daniele Corti, Flavio Dal Corso, Olivia Dalager, Christophe De La Taille, Zhi Deng, Ziyan Deng, Wilfried Depnering, Marco Diaz, Xuefeng Ding, Yayun Ding, Bayu Dirgantara, Sergey Dmitrievsky, Tadeas Dohnal, Dmitry Dolzhikov, Georgy Donchenko, Jianmeng Dong, Evgeny Doroshkevich, Wei Dou, Marcos Dracos, Frédéric Druillole, Ran Du, Shuxian Du, Stefano Dusini, Hongyue Duyang, Timo Enqvist, Andrea Fabbri, Ulrike Fahrendholz, Lei Fan, Jian Fang, Wenxing Fang, Marco Fargetta, Dmitry Fedoseev, Zhengyong Fei, Li-Cheng Feng, Qichun Feng, Federico Ferraro, Amélie Fournier, Haonan Gan, Feng Gao, Alberto Garfagnini, Arsenii Gavrikov, Marco Giammarchi, Nunzio Giudice, Maxim Gonchar, Guanghua Gong, Hui Gong, Yuri Gornushkin, Alexandre Göttel, Marco Grassi, Maxim Gromov, Vasily Gromov, Minghao Gu, Xiaofei Gu, Yu Gu, Mengyun Guan, Yuduo Guan, Nunzio Guardone, Cong Guo, Wanlei Guo, Xinheng Guo, Yuhang Guo, Caren Hagner, Ran Han, Yang Han, Jiajun Hao, Miao He, Wei He, Tobias Heinz, Patrick Hellmuth, Yuekun Heng, Rafael Herrera, YuenKeung Hor, Shaojing Hou, Yee Hsiung, Bei-Zhen Hu, Hang Hu, Jianrun Hu, Jun Hu, Shouyang Hu, Tao Hu, Yuxiang Hu, Zhuojun Hu, Guihong Huang, Hanxiong Huang, Kaixi Huang, Kaixuan Huang, Wenhao Huang, Xin Huang, Xingtao Huang, Yongbo Huang, Jiaqi Hui, Lei Huo, Wenju Huo, Cédric Huss, Safeer Hussain, Ara Ioannisian, Roberto Isocrate, Beatrice Jelmini, Ignacio Jeria, Xiaolu Ji, Huihui Jia, Junji Jia, Siyu Jian, Di Jiang, Wei Jiang, Xiaoshan Jiang, Xiaoping Jing, Cécile Jollet, Philipp Kampmann, Li Kang, Rebin Karaparambil, Narine Kazarian, Ali Khan, Amina Khatun, Khanchai Khosonthongkee, Denis Korablev, Konstantin Kouzakov, Alexey Krasnoperov, Nikolay Kutovskiy, Pasi Kuusiniemi, Tobias Lachenmaier, Cecilia Landini, Sébastien Leblanc, Victor Lebrin, Frederic Lefevre, Ruiting Lei, Rupert Leitner, Jason Leung, Daozheng Li, Demin Li, Fei Li, Fule Li, Gaosong Li, Huiling Li, Mengzhao Li, Min Li, Nan Li, Qingjiang Li, Ruhui Li, Rui Li, Shanfeng Li, Tao Li, Teng Li, Weidong Li, Weiguo Li, Xiaomei Li, Xiaonan Li, Xinglong Li, Xiwen Li, Yi Li, Yichen Li, Yufeng Li, Zepeng Li, Zhaohan Li, Zhibing Li, Ziyuan Li, Zonghai Li, Hao Liang, Hao Liang, Jiajun Liao, Ayut Limphirat, Guey-Lin Lin, Shengxin Lin, Tao Lin, Jiajie Ling, Ivano Lippi, Caimei Liu, Fang Liu, Haidong Liu, Haotian Liu, Hongbang Liu, Hongjuan Liu, Hongtao Liu, Hui Liu, Jianglai Liu, Jinchang Liu, Min Liu, Qian Liu, Qin Liu, Runxuan Liu, Shubin Liu, Shulin Liu, Xiaowei Liu, Xiwen Liu, Yan Liu, Yunzhe Liu, Alexey Lokhov, Paolo Lombardi, Claudio Lombardo, Kai Loo, Chuan Lu, Haoqi Lu, Jingbin Lu, Junguang Lu, Peizhi Lu, Shuxiang Lu, Bayarto Lubsandorzhiev, Sultim Lubsandorzhiev, Livia Ludhova, Arslan Lukanov, Daibin Luo, Fengjiao Luo, Guang Luo, Jianyi Luo, Shu Luo, Wuming Luo, Xiaojie Luo, Xiaolan Luo, Vladimir Lyashuk, Bangzheng Ma, Bing Ma, Qiumei Ma, Si Ma, Xiaoyan Ma, Xubo Ma, Jihane Maalmi, Marco Magoni, Jingyu Mai, Yury Malyshkin, Roberto Carlos Mandujano, Fabio Mantovani, Xin Mao, Yajun Mao, Stefano M. Mari, Filippo Marini, Agnese Martini, Matthias Mayer, Davit Mayilyan, Ints Mednieks, Yue Meng, Anita Meraviglia, Anselmo Meregaglia, Emanuela Meroni, David Meyhöfer, Mauro Mezzetto, Lino Miramonti, Paolo Montini, Michele Montuschi, Axel Müller, Massimiliano Nastasi, Dmitry V. Naumov, Elena Naumova, Diana Navas-Nicolas, Igor Nemchenok, Minh Thuan Nguyen Thi, Alexey Nikolaev, Feipeng Ning, Zhe Ning, Hiroshi Nunokawa, Lothar Oberauer, Juan Pedro Ochoa-Ricoux, Alexander Olshevskiy, Domizia Orestano, Fausto Ortica, Rainer Othegraven, Alessandro Paoloni, Sergio Parmeggiano, Yatian Pei, Luca Pelicci, Anguo Peng, Haiping Peng, Yu Peng, Zhaoyuan Peng, Frédéric Perrot, Pierre-Alexandre Petitjean, Fabrizio Petrucci, Oliver Pilarczyk, Luis Felipe Piñeres Rico, Artyom Popov, Pascal Poussot, Ezio Previtali, Fazhi Qi, Ming Qi, Sen Qian, Xiaohui Qian, Zhen Qian, Hao Qiao, Zhonghua Qin, Shoukang Qiu, Gioacchino Ranucci, Reem Rasheed, Alessandra Re, Abdel Rebii, Mariia Redchuk, Bin Ren, Jie Ren, Barbara Ricci, Mariam Rifai, Mathieu Roche, Narongkiat Rodphai, Narongkiat Rodphai, Aldo Romani, Bedřich Roskovec, Xichao Ruan, Arseniy Rybnikov, Andrey Sadovsky, Paolo Saggese, Simone Sanfilippo, Anut Sangka, Utane Sawangwit, Julia Sawatzki, Michaela Schever, Cédric Schwab, Konstantin Schweizer, Alexandr Selyunin, Andrea Serafini, Giulio Settanta, Mariangela Settimo, Zhuang Shao, Vladislav Sharov, Arina Shaydurova, Jingyan Shi, Yanan Shi, Vitaly Shutov, Andrey Sidorenkov, Fedor Šimkovic, Chiara Sirignano, Jaruchit Siripak, Monica Sisti, Maciej Slupecki, Mikhail Smirnov, Oleg Smirnov, Thiago Sogo-Bezerra, Sergey Sokolov, Wuying Song, Julanan Songwadhana, Boonrucksar Soonthornthum, Albert Sotnikov, Ondřej Šrámek, Warintorn Sreethawong, Achim Stahl, Luca Stanco, Konstantin Stankevich, Dušan Štefánik, Hans Steiger, Jochen Steinmann, Tobias Sterr, Matthias Raphael Stock, Virginia Strati, Alexander Studenikin, Jun Su, Shifeng Sun, Xilei Sun, Yongjie Sun, Yongzhao Sun, Zhengyang Sun, Narumon Suwonjandee, Michal Szelezniak, Akira Takenaka, Jian Tang, Qiang Tang, Quan Tang, Xiao Tang, Vidhya Thara Hariharan, Eric Theisen, Alexander Tietzsch, Igor Tkachev, Tomas Tmej, Marco Danilo Claudio Torri, Francesco Tortorici, Konstantin Treskov, Andrea Triossi, Riccardo Triozzi, Giancarlo Troni, Wladyslaw Trzaska, Yu-Chen Tung, Cristina Tuve, Nikita Ushakov, Vadim Vedin, Giuseppe Verde, Maxim Vialkov, Benoit Viaud, Cornelius Moritz Vollbrecht, Katharina von Sturm, Vit Vorobel, Dmitriy Voronin, Lucia Votano, Pablo Walker, Caishen Wang, Chung-Hsiang Wang, Derun Wang, En Wang, Guoli Wang, Jian Wang, Jun Wang, Lu Wang, Meng Wang, Meng Wang, Ruiguang Wang, Siguang Wang, Wei Wang, Wenshuai Wang, Xi Wang, Xiangyue Wang, Yangfu Wang, Yaoguang Wang, Yi Wang, Yi Wang, Yifang Wang, Yuanqing Wang, Yuman Wang, Zhe Wang, Zheng Wang, Zhimin Wang, Apimook Watcharangkool, Wei Wei, Wei Wei, Wenlu Wei, Yadong Wei, Kaile Wen, Liangjian Wen, Jun Weng, Christopher Wiebusch, Rosmarie Wirth, Bjoern Wonsak, Diru Wu, Qun Wu, Shuai Wu, Zhi Wu, Michael Wurm, Jacques Wurtz, Christian Wysotzki, Yufei Xi, Dongmei Xia, Xiang Xiao, Xiaochuan Xie, Yuguang Xie, Zhangquan Xie, Zhao Xin, Zhizhong Xing, Benda Xu, Cheng Xu, Donglian Xu, Fanrong Xu, Hangkun Xu, Jilei Xu, Jing Xu, Meihang Xu, Yin Xu, Yu Xu, Baojun Yan, Qiyu Yan, Taylor Yan, Wenqi Yan, Xiongbo Yan, Yupeng Yan, Changgen Yang, Chengfeng Yang, Jie Yang, Lei Yang, Xiaoyu Yang, Yifan Yang, Yifan Yang, Haifeng Yao, Jiaxuan Ye, Mei Ye, Ziping Ye, Frédéric Yermia, Zhengyun You, Boxiang Yu, Chiye Yu, Chunxu Yu, Guojun Yu, Hongzhao Yu, Miao Yu, Xianghui Yu, Zeyuan Yu, Zezhong Yu, Cenxi Yuan, Chengzhuo Yuan, Ying Yuan, Zhenxiong Yuan, Baobiao Yue, Noman Zafar, Vitalii Zavadskyi, Shan Zeng, Tingxuan Zeng, Yuda Zeng, Liang Zhan, Aiqiang Zhang, Bin Zhang, Binting Zhang, Feiyang Zhang, Honghao Zhang, Jialiang Zhang, Jiawen Zhang, Jie Zhang, Jin Zhang, Jingbo Zhang, Jinnan Zhang, Mohan Zhang, Peng Zhang, Qingmin Zhang, Shiqi Zhang, Shu Zhang, Tao Zhang, Xiaomei Zhang, Xin Zhang, Xuantong Zhang, Yinhong Zhang, Yiyu Zhang, Yongpeng Zhang, Yu Zhang, Yuanyuan Zhang, Yumei Zhang, Zhenyu Zhang, Zhijian Zhang, Jie Zhao, Rong Zhao, Runze Zhao, Shujun Zhao, Dongqin Zheng, Hua Zheng, Yangheng Zheng, Weirong Zhong, Jing Zhou, Li Zhou, Nan Zhou, Shun Zhou, Tong Zhou, Xiang Zhou, Jingsen Zhu, Kangfu Zhu, Kejun Zhu, Zhihang Zhu, Bo Zhuang, Honglin Zhuang, Liang Zong, Jiaheng Zou, Sebastian Zwickel, JUNO collaboration
{"title":"The design and technology development of the JUNO central detector","authors":"Angel Abusleme,&nbsp;Thomas Adam,&nbsp;Shakeel Ahmad,&nbsp;Rizwan Ahmed,&nbsp;Sebastiano Aiello,&nbsp;Muhammad Akram,&nbsp;Abid Aleem,&nbsp;Tsagkarakis Alexandros,&nbsp;Fengpeng An,&nbsp;Qi An,&nbsp;Giuseppe Andronico,&nbsp;Nikolay Anfimov,&nbsp;Vito Antonelli,&nbsp;Tatiana Antoshkina,&nbsp;Burin Asavapibhop,&nbsp;João Pedro Athayde Marcondes de André,&nbsp;Didier Auguste,&nbsp;Weidong Bai,&nbsp;Nikita Balashov,&nbsp;Wander Baldini,&nbsp;Andrea Barresi,&nbsp;Davide Basilico,&nbsp;Eric Baussan,&nbsp;Marco Bellato,&nbsp;Marco Beretta,&nbsp;Antonio Bergnoli,&nbsp;Daniel Bick,&nbsp;Thilo Birkenfeld,&nbsp;David Blum,&nbsp;Simon Blyth,&nbsp;Anastasia Bolshakova,&nbsp;Mathieu Bongrand,&nbsp;Clément Bordereau,&nbsp;Dominique Breton,&nbsp;Augusto Brigatti,&nbsp;Riccardo Brugnera,&nbsp;Riccardo Bruno,&nbsp;Antonio Budano,&nbsp;Jose Busto,&nbsp;Anatael Cabrera,&nbsp;Barbara Caccianiga,&nbsp;Hao Cai,&nbsp;Xiao Cai,&nbsp;Yanke Cai,&nbsp;Zhiyan Cai,&nbsp;Stéphane Callier,&nbsp;Antonio Cammi,&nbsp;Agustin Campeny,&nbsp;Chuanya Cao,&nbsp;Guofu Cao,&nbsp;Jun Cao,&nbsp;Rossella Caruso,&nbsp;Cédric Cerna,&nbsp;Vanessa Cerrone,&nbsp;Chi Chan,&nbsp;Jinfan Chang,&nbsp;Yun Chang,&nbsp;Guoming Chen,&nbsp;Pingping Chen,&nbsp;Shaomin Chen,&nbsp;Yixue Chen,&nbsp;Yu Chen,&nbsp;Zhiyuan Chen,&nbsp;Zikang Chen,&nbsp;Jie Cheng,&nbsp;Yaping Cheng,&nbsp;Yu Chin Cheng,&nbsp;Alexander Chepurnov,&nbsp;Alexey Chetverikov,&nbsp;Davide Chiesa,&nbsp;Pietro Chimenti,&nbsp;Ziliang Chu,&nbsp;Artem Chukanov,&nbsp;Gérard Claverie,&nbsp;Catia Clementi,&nbsp;Barbara Clerbaux,&nbsp;Marta Colomer Molla,&nbsp;Selma Conforti Di Lorenzo,&nbsp;Alberto Coppi,&nbsp;Daniele Corti,&nbsp;Flavio Dal Corso,&nbsp;Olivia Dalager,&nbsp;Christophe De La Taille,&nbsp;Zhi Deng,&nbsp;Ziyan Deng,&nbsp;Wilfried Depnering,&nbsp;Marco Diaz,&nbsp;Xuefeng Ding,&nbsp;Yayun Ding,&nbsp;Bayu Dirgantara,&nbsp;Sergey Dmitrievsky,&nbsp;Tadeas Dohnal,&nbsp;Dmitry Dolzhikov,&nbsp;Georgy Donchenko,&nbsp;Jianmeng Dong,&nbsp;Evgeny Doroshkevich,&nbsp;Wei Dou,&nbsp;Marcos Dracos,&nbsp;Frédéric Druillole,&nbsp;Ran Du,&nbsp;Shuxian Du,&nbsp;Stefano Dusini,&nbsp;Hongyue Duyang,&nbsp;Timo Enqvist,&nbsp;Andrea Fabbri,&nbsp;Ulrike Fahrendholz,&nbsp;Lei Fan,&nbsp;Jian Fang,&nbsp;Wenxing Fang,&nbsp;Marco Fargetta,&nbsp;Dmitry Fedoseev,&nbsp;Zhengyong Fei,&nbsp;Li-Cheng Feng,&nbsp;Qichun Feng,&nbsp;Federico Ferraro,&nbsp;Amélie Fournier,&nbsp;Haonan Gan,&nbsp;Feng Gao,&nbsp;Alberto Garfagnini,&nbsp;Arsenii Gavrikov,&nbsp;Marco Giammarchi,&nbsp;Nunzio Giudice,&nbsp;Maxim Gonchar,&nbsp;Guanghua Gong,&nbsp;Hui Gong,&nbsp;Yuri Gornushkin,&nbsp;Alexandre Göttel,&nbsp;Marco Grassi,&nbsp;Maxim Gromov,&nbsp;Vasily Gromov,&nbsp;Minghao Gu,&nbsp;Xiaofei Gu,&nbsp;Yu Gu,&nbsp;Mengyun Guan,&nbsp;Yuduo Guan,&nbsp;Nunzio Guardone,&nbsp;Cong Guo,&nbsp;Wanlei Guo,&nbsp;Xinheng Guo,&nbsp;Yuhang Guo,&nbsp;Caren Hagner,&nbsp;Ran Han,&nbsp;Yang Han,&nbsp;Jiajun Hao,&nbsp;Miao He,&nbsp;Wei He,&nbsp;Tobias Heinz,&nbsp;Patrick Hellmuth,&nbsp;Yuekun Heng,&nbsp;Rafael Herrera,&nbsp;YuenKeung Hor,&nbsp;Shaojing Hou,&nbsp;Yee Hsiung,&nbsp;Bei-Zhen Hu,&nbsp;Hang Hu,&nbsp;Jianrun Hu,&nbsp;Jun Hu,&nbsp;Shouyang Hu,&nbsp;Tao Hu,&nbsp;Yuxiang Hu,&nbsp;Zhuojun Hu,&nbsp;Guihong Huang,&nbsp;Hanxiong Huang,&nbsp;Kaixi Huang,&nbsp;Kaixuan Huang,&nbsp;Wenhao Huang,&nbsp;Xin Huang,&nbsp;Xingtao Huang,&nbsp;Yongbo Huang,&nbsp;Jiaqi Hui,&nbsp;Lei Huo,&nbsp;Wenju Huo,&nbsp;Cédric Huss,&nbsp;Safeer Hussain,&nbsp;Ara Ioannisian,&nbsp;Roberto Isocrate,&nbsp;Beatrice Jelmini,&nbsp;Ignacio Jeria,&nbsp;Xiaolu Ji,&nbsp;Huihui Jia,&nbsp;Junji Jia,&nbsp;Siyu Jian,&nbsp;Di Jiang,&nbsp;Wei Jiang,&nbsp;Xiaoshan Jiang,&nbsp;Xiaoping Jing,&nbsp;Cécile Jollet,&nbsp;Philipp Kampmann,&nbsp;Li Kang,&nbsp;Rebin Karaparambil,&nbsp;Narine Kazarian,&nbsp;Ali Khan,&nbsp;Amina Khatun,&nbsp;Khanchai Khosonthongkee,&nbsp;Denis Korablev,&nbsp;Konstantin Kouzakov,&nbsp;Alexey Krasnoperov,&nbsp;Nikolay Kutovskiy,&nbsp;Pasi Kuusiniemi,&nbsp;Tobias Lachenmaier,&nbsp;Cecilia Landini,&nbsp;Sébastien Leblanc,&nbsp;Victor Lebrin,&nbsp;Frederic Lefevre,&nbsp;Ruiting Lei,&nbsp;Rupert Leitner,&nbsp;Jason Leung,&nbsp;Daozheng Li,&nbsp;Demin Li,&nbsp;Fei Li,&nbsp;Fule Li,&nbsp;Gaosong Li,&nbsp;Huiling Li,&nbsp;Mengzhao Li,&nbsp;Min Li,&nbsp;Nan Li,&nbsp;Qingjiang Li,&nbsp;Ruhui Li,&nbsp;Rui Li,&nbsp;Shanfeng Li,&nbsp;Tao Li,&nbsp;Teng Li,&nbsp;Weidong Li,&nbsp;Weiguo Li,&nbsp;Xiaomei Li,&nbsp;Xiaonan Li,&nbsp;Xinglong Li,&nbsp;Xiwen Li,&nbsp;Yi Li,&nbsp;Yichen Li,&nbsp;Yufeng Li,&nbsp;Zepeng Li,&nbsp;Zhaohan Li,&nbsp;Zhibing Li,&nbsp;Ziyuan Li,&nbsp;Zonghai Li,&nbsp;Hao Liang,&nbsp;Hao Liang,&nbsp;Jiajun Liao,&nbsp;Ayut Limphirat,&nbsp;Guey-Lin Lin,&nbsp;Shengxin Lin,&nbsp;Tao Lin,&nbsp;Jiajie Ling,&nbsp;Ivano Lippi,&nbsp;Caimei Liu,&nbsp;Fang Liu,&nbsp;Haidong Liu,&nbsp;Haotian Liu,&nbsp;Hongbang Liu,&nbsp;Hongjuan Liu,&nbsp;Hongtao Liu,&nbsp;Hui Liu,&nbsp;Jianglai Liu,&nbsp;Jinchang Liu,&nbsp;Min Liu,&nbsp;Qian Liu,&nbsp;Qin Liu,&nbsp;Runxuan Liu,&nbsp;Shubin Liu,&nbsp;Shulin Liu,&nbsp;Xiaowei Liu,&nbsp;Xiwen Liu,&nbsp;Yan Liu,&nbsp;Yunzhe Liu,&nbsp;Alexey Lokhov,&nbsp;Paolo Lombardi,&nbsp;Claudio Lombardo,&nbsp;Kai Loo,&nbsp;Chuan Lu,&nbsp;Haoqi Lu,&nbsp;Jingbin Lu,&nbsp;Junguang Lu,&nbsp;Peizhi Lu,&nbsp;Shuxiang Lu,&nbsp;Bayarto Lubsandorzhiev,&nbsp;Sultim Lubsandorzhiev,&nbsp;Livia Ludhova,&nbsp;Arslan Lukanov,&nbsp;Daibin Luo,&nbsp;Fengjiao Luo,&nbsp;Guang Luo,&nbsp;Jianyi Luo,&nbsp;Shu Luo,&nbsp;Wuming Luo,&nbsp;Xiaojie Luo,&nbsp;Xiaolan Luo,&nbsp;Vladimir Lyashuk,&nbsp;Bangzheng Ma,&nbsp;Bing Ma,&nbsp;Qiumei Ma,&nbsp;Si Ma,&nbsp;Xiaoyan Ma,&nbsp;Xubo Ma,&nbsp;Jihane Maalmi,&nbsp;Marco Magoni,&nbsp;Jingyu Mai,&nbsp;Yury Malyshkin,&nbsp;Roberto Carlos Mandujano,&nbsp;Fabio Mantovani,&nbsp;Xin Mao,&nbsp;Yajun Mao,&nbsp;Stefano M. Mari,&nbsp;Filippo Marini,&nbsp;Agnese Martini,&nbsp;Matthias Mayer,&nbsp;Davit Mayilyan,&nbsp;Ints Mednieks,&nbsp;Yue Meng,&nbsp;Anita Meraviglia,&nbsp;Anselmo Meregaglia,&nbsp;Emanuela Meroni,&nbsp;David Meyhöfer,&nbsp;Mauro Mezzetto,&nbsp;Lino Miramonti,&nbsp;Paolo Montini,&nbsp;Michele Montuschi,&nbsp;Axel Müller,&nbsp;Massimiliano Nastasi,&nbsp;Dmitry V. Naumov,&nbsp;Elena Naumova,&nbsp;Diana Navas-Nicolas,&nbsp;Igor Nemchenok,&nbsp;Minh Thuan Nguyen Thi,&nbsp;Alexey Nikolaev,&nbsp;Feipeng Ning,&nbsp;Zhe Ning,&nbsp;Hiroshi Nunokawa,&nbsp;Lothar Oberauer,&nbsp;Juan Pedro Ochoa-Ricoux,&nbsp;Alexander Olshevskiy,&nbsp;Domizia Orestano,&nbsp;Fausto Ortica,&nbsp;Rainer Othegraven,&nbsp;Alessandro Paoloni,&nbsp;Sergio Parmeggiano,&nbsp;Yatian Pei,&nbsp;Luca Pelicci,&nbsp;Anguo Peng,&nbsp;Haiping Peng,&nbsp;Yu Peng,&nbsp;Zhaoyuan Peng,&nbsp;Frédéric Perrot,&nbsp;Pierre-Alexandre Petitjean,&nbsp;Fabrizio Petrucci,&nbsp;Oliver Pilarczyk,&nbsp;Luis Felipe Piñeres Rico,&nbsp;Artyom Popov,&nbsp;Pascal Poussot,&nbsp;Ezio Previtali,&nbsp;Fazhi Qi,&nbsp;Ming Qi,&nbsp;Sen Qian,&nbsp;Xiaohui Qian,&nbsp;Zhen Qian,&nbsp;Hao Qiao,&nbsp;Zhonghua Qin,&nbsp;Shoukang Qiu,&nbsp;Gioacchino Ranucci,&nbsp;Reem Rasheed,&nbsp;Alessandra Re,&nbsp;Abdel Rebii,&nbsp;Mariia Redchuk,&nbsp;Bin Ren,&nbsp;Jie Ren,&nbsp;Barbara Ricci,&nbsp;Mariam Rifai,&nbsp;Mathieu Roche,&nbsp;Narongkiat Rodphai,&nbsp;Narongkiat Rodphai,&nbsp;Aldo Romani,&nbsp;Bedřich Roskovec,&nbsp;Xichao Ruan,&nbsp;Arseniy Rybnikov,&nbsp;Andrey Sadovsky,&nbsp;Paolo Saggese,&nbsp;Simone Sanfilippo,&nbsp;Anut Sangka,&nbsp;Utane Sawangwit,&nbsp;Julia Sawatzki,&nbsp;Michaela Schever,&nbsp;Cédric Schwab,&nbsp;Konstantin Schweizer,&nbsp;Alexandr Selyunin,&nbsp;Andrea Serafini,&nbsp;Giulio Settanta,&nbsp;Mariangela Settimo,&nbsp;Zhuang Shao,&nbsp;Vladislav Sharov,&nbsp;Arina Shaydurova,&nbsp;Jingyan Shi,&nbsp;Yanan Shi,&nbsp;Vitaly Shutov,&nbsp;Andrey Sidorenkov,&nbsp;Fedor Šimkovic,&nbsp;Chiara Sirignano,&nbsp;Jaruchit Siripak,&nbsp;Monica Sisti,&nbsp;Maciej Slupecki,&nbsp;Mikhail Smirnov,&nbsp;Oleg Smirnov,&nbsp;Thiago Sogo-Bezerra,&nbsp;Sergey Sokolov,&nbsp;Wuying Song,&nbsp;Julanan Songwadhana,&nbsp;Boonrucksar Soonthornthum,&nbsp;Albert Sotnikov,&nbsp;Ondřej Šrámek,&nbsp;Warintorn Sreethawong,&nbsp;Achim Stahl,&nbsp;Luca Stanco,&nbsp;Konstantin Stankevich,&nbsp;Dušan Štefánik,&nbsp;Hans Steiger,&nbsp;Jochen Steinmann,&nbsp;Tobias Sterr,&nbsp;Matthias Raphael Stock,&nbsp;Virginia Strati,&nbsp;Alexander Studenikin,&nbsp;Jun Su,&nbsp;Shifeng Sun,&nbsp;Xilei Sun,&nbsp;Yongjie Sun,&nbsp;Yongzhao Sun,&nbsp;Zhengyang Sun,&nbsp;Narumon Suwonjandee,&nbsp;Michal Szelezniak,&nbsp;Akira Takenaka,&nbsp;Jian Tang,&nbsp;Qiang Tang,&nbsp;Quan Tang,&nbsp;Xiao Tang,&nbsp;Vidhya Thara Hariharan,&nbsp;Eric Theisen,&nbsp;Alexander Tietzsch,&nbsp;Igor Tkachev,&nbsp;Tomas Tmej,&nbsp;Marco Danilo Claudio Torri,&nbsp;Francesco Tortorici,&nbsp;Konstantin Treskov,&nbsp;Andrea Triossi,&nbsp;Riccardo Triozzi,&nbsp;Giancarlo Troni,&nbsp;Wladyslaw Trzaska,&nbsp;Yu-Chen Tung,&nbsp;Cristina Tuve,&nbsp;Nikita Ushakov,&nbsp;Vadim Vedin,&nbsp;Giuseppe Verde,&nbsp;Maxim Vialkov,&nbsp;Benoit Viaud,&nbsp;Cornelius Moritz Vollbrecht,&nbsp;Katharina von Sturm,&nbsp;Vit Vorobel,&nbsp;Dmitriy Voronin,&nbsp;Lucia Votano,&nbsp;Pablo Walker,&nbsp;Caishen Wang,&nbsp;Chung-Hsiang Wang,&nbsp;Derun Wang,&nbsp;En Wang,&nbsp;Guoli Wang,&nbsp;Jian Wang,&nbsp;Jun Wang,&nbsp;Lu Wang,&nbsp;Meng Wang,&nbsp;Meng Wang,&nbsp;Ruiguang Wang,&nbsp;Siguang Wang,&nbsp;Wei Wang,&nbsp;Wenshuai Wang,&nbsp;Xi Wang,&nbsp;Xiangyue Wang,&nbsp;Yangfu Wang,&nbsp;Yaoguang Wang,&nbsp;Yi Wang,&nbsp;Yi Wang,&nbsp;Yifang Wang,&nbsp;Yuanqing Wang,&nbsp;Yuman Wang,&nbsp;Zhe Wang,&nbsp;Zheng Wang,&nbsp;Zhimin Wang,&nbsp;Apimook Watcharangkool,&nbsp;Wei Wei,&nbsp;Wei Wei,&nbsp;Wenlu Wei,&nbsp;Yadong Wei,&nbsp;Kaile Wen,&nbsp;Liangjian Wen,&nbsp;Jun Weng,&nbsp;Christopher Wiebusch,&nbsp;Rosmarie Wirth,&nbsp;Bjoern Wonsak,&nbsp;Diru Wu,&nbsp;Qun Wu,&nbsp;Shuai Wu,&nbsp;Zhi Wu,&nbsp;Michael Wurm,&nbsp;Jacques Wurtz,&nbsp;Christian Wysotzki,&nbsp;Yufei Xi,&nbsp;Dongmei Xia,&nbsp;Xiang Xiao,&nbsp;Xiaochuan Xie,&nbsp;Yuguang Xie,&nbsp;Zhangquan Xie,&nbsp;Zhao Xin,&nbsp;Zhizhong Xing,&nbsp;Benda Xu,&nbsp;Cheng Xu,&nbsp;Donglian Xu,&nbsp;Fanrong Xu,&nbsp;Hangkun Xu,&nbsp;Jilei Xu,&nbsp;Jing Xu,&nbsp;Meihang Xu,&nbsp;Yin Xu,&nbsp;Yu Xu,&nbsp;Baojun Yan,&nbsp;Qiyu Yan,&nbsp;Taylor Yan,&nbsp;Wenqi Yan,&nbsp;Xiongbo Yan,&nbsp;Yupeng Yan,&nbsp;Changgen Yang,&nbsp;Chengfeng Yang,&nbsp;Jie Yang,&nbsp;Lei Yang,&nbsp;Xiaoyu Yang,&nbsp;Yifan Yang,&nbsp;Yifan Yang,&nbsp;Haifeng Yao,&nbsp;Jiaxuan Ye,&nbsp;Mei Ye,&nbsp;Ziping Ye,&nbsp;Frédéric Yermia,&nbsp;Zhengyun You,&nbsp;Boxiang Yu,&nbsp;Chiye Yu,&nbsp;Chunxu Yu,&nbsp;Guojun Yu,&nbsp;Hongzhao Yu,&nbsp;Miao Yu,&nbsp;Xianghui Yu,&nbsp;Zeyuan Yu,&nbsp;Zezhong Yu,&nbsp;Cenxi Yuan,&nbsp;Chengzhuo Yuan,&nbsp;Ying Yuan,&nbsp;Zhenxiong Yuan,&nbsp;Baobiao Yue,&nbsp;Noman Zafar,&nbsp;Vitalii Zavadskyi,&nbsp;Shan Zeng,&nbsp;Tingxuan Zeng,&nbsp;Yuda Zeng,&nbsp;Liang Zhan,&nbsp;Aiqiang Zhang,&nbsp;Bin Zhang,&nbsp;Binting Zhang,&nbsp;Feiyang Zhang,&nbsp;Honghao Zhang,&nbsp;Jialiang Zhang,&nbsp;Jiawen Zhang,&nbsp;Jie Zhang,&nbsp;Jin Zhang,&nbsp;Jingbo Zhang,&nbsp;Jinnan Zhang,&nbsp;Mohan Zhang,&nbsp;Peng Zhang,&nbsp;Qingmin Zhang,&nbsp;Shiqi Zhang,&nbsp;Shu Zhang,&nbsp;Tao Zhang,&nbsp;Xiaomei Zhang,&nbsp;Xin Zhang,&nbsp;Xuantong Zhang,&nbsp;Yinhong Zhang,&nbsp;Yiyu Zhang,&nbsp;Yongpeng Zhang,&nbsp;Yu Zhang,&nbsp;Yuanyuan Zhang,&nbsp;Yumei Zhang,&nbsp;Zhenyu Zhang,&nbsp;Zhijian Zhang,&nbsp;Jie Zhao,&nbsp;Rong Zhao,&nbsp;Runze Zhao,&nbsp;Shujun Zhao,&nbsp;Dongqin Zheng,&nbsp;Hua Zheng,&nbsp;Yangheng Zheng,&nbsp;Weirong Zhong,&nbsp;Jing Zhou,&nbsp;Li Zhou,&nbsp;Nan Zhou,&nbsp;Shun Zhou,&nbsp;Tong Zhou,&nbsp;Xiang Zhou,&nbsp;Jingsen Zhu,&nbsp;Kangfu Zhu,&nbsp;Kejun Zhu,&nbsp;Zhihang Zhu,&nbsp;Bo Zhuang,&nbsp;Honglin Zhuang,&nbsp;Liang Zong,&nbsp;Jiaheng Zou,&nbsp;Sebastian Zwickel,&nbsp;JUNO collaboration","doi":"10.1140/epjp/s13360-024-05830-8","DOIUrl":"10.1140/epjp/s13360-024-05830-8","url":null,"abstract":"<div><p>The Jiangmen Underground Neutrino Observatory (JUNO) is a large-scale neutrino experiment with multiple physics goals including determining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from supernovae, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high-energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive background and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, and one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, and the usage of high-strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment such as the LS filling, overflowing, and circulating system was done.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05830-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quarkonia mass spectra and thermodynamical properties under the effect of finite magnetic field and quark condensate
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-25 DOI: 10.1140/epjp/s13360-024-05925-2
Indrani Nilima, B. K. Singh, Mohammad Yousuf Jamal
{"title":"Quarkonia mass spectra and thermodynamical properties under the effect of finite magnetic field and quark condensate","authors":"Indrani Nilima,&nbsp;B. K. Singh,&nbsp;Mohammad Yousuf Jamal","doi":"10.1140/epjp/s13360-024-05925-2","DOIUrl":"10.1140/epjp/s13360-024-05925-2","url":null,"abstract":"<div><p>In this article, we explore the thermodynamic properties of the quark–gluon plasma in the presence of magnetic fields. Our analysis of the magnetized QGP equation of state takes into account the effects of magnetic catalysis and inverse magnetic catalysis on constituent quark masses. We present a comprehensive theoretical framework that considers the modified heavy quark potential and Debye screening mass. Our analysis further extends to the binding energy and mass spectra of various charmonium and bottomonium states. We discuss these results alongside the thermodynamic properties, namely, pressure, energy density, and speed of sound, shedding light on the interplay between magnetic fields and medium temperature. Our findings suggest that the magnetic field, along with the magnetic catalysis and inverse magnetic catalysis effects, significantly modifies the thermodynamic properties of QGP.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic nanostructures for color vision deficiency (CVD) management
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-24 DOI: 10.1140/epjp/s13360-024-05921-6
N. Roostaei, S. M. Hamidi
{"title":"Plasmonic nanostructures for color vision deficiency (CVD) management","authors":"N. Roostaei,&nbsp;S. M. Hamidi","doi":"10.1140/epjp/s13360-024-05921-6","DOIUrl":"10.1140/epjp/s13360-024-05921-6","url":null,"abstract":"<div><p>Color blindness, also known as color vision deficiency (CVD), is a prevalent ocular disorder that hinders distinguishing different colors, a challenge experienced by a considerable portion of the global population (8−10% of males and 0.4−0.5% of females). CVD patients are frequently restricted from crucial professions such as military or police, and cannot recognize colors in public places or media like watching TV. Despite ongoing efforts, there is no definitive cure for color blindness; however, various color filter-based devices such as tinted glasses and contact lenses have been introduced to assist CVD people. Recently, plasmonic nanostructures have attracted significant attention for CVD management by replacing chemical dyes due to their outstanding properties and the adjustability of plasmonic resonances. This study reviews the different wearables utilized in CVD management, such as eyeglasses and contact lenses, with a special emphasis on the innovative plasmonic eye wearables that have emerged in recent advances. The capability to modify the plasmonic properties by manipulating their morphology provides novel perspectives for CVD management and smart ophthalmic wearables.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic theory of stellar systems and two-dimensional vortices
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-24 DOI: 10.1140/epjp/s13360-024-05797-6
Pierre-Henri Chavanis
{"title":"Kinetic theory of stellar systems and two-dimensional vortices","authors":"Pierre-Henri Chavanis","doi":"10.1140/epjp/s13360-024-05797-6","DOIUrl":"10.1140/epjp/s13360-024-05797-6","url":null,"abstract":"<div><p>We discuss the kinetic theory of stellar systems and two-dimensional vortices and stress their analogies. We recall the derivation of the Landau and Lenard–Balescu equations from the Klimontovich formalism. These equations take into account two-body correlations and are valid at the order 1/<i>N</i>, where <i>N</i> is the number of particles in the system. They have the structure of a Fokker–Planck equation involving a diffusion term and a drift term. The systematic drift of a vortex is the counterpart of the dynamical friction experienced by a star. At equilibrium, the diffusion and the drift terms balance each other establishing the Boltzmann distribution of statistical mechanics. We discuss the problem of kinetic blocking in certain cases and how it can be solved at the order <span>(1/N^2)</span> by the consideration of three-body correlations. We also consider the behaviour of the system close to the critical point following a recent suggestion by Hamilton and Heinemann (2023). We present a simple calculation, valid for spatially homogeneous systems with long-range interactions described by the Cauchy distribution, showing how the consideration of the Landau modes regularizes the divergence of the friction by polarization at the critical point. We mention, however, that fluctuations may be very important close to the critical point and that deterministic kinetic equations for the mean distribution function (such as the Landau and Lenard–Balescu equations) should be replaced by stochastic kinetic equations.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05797-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical transition rates of a polar quantum disc with conical disclination in a magnetic field: effects of some forms of the electric potential
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-24 DOI: 10.1140/epjp/s13360-024-05909-2
Vinod Kumar, Surender Pratap, Moletlanyi Tshipa, Monkami Masale
{"title":"Optical transition rates of a polar quantum disc with conical disclination in a magnetic field: effects of some forms of the electric potential","authors":"Vinod Kumar,&nbsp;Surender Pratap,&nbsp;Moletlanyi Tshipa,&nbsp;Monkami Masale","doi":"10.1140/epjp/s13360-024-05909-2","DOIUrl":"10.1140/epjp/s13360-024-05909-2","url":null,"abstract":"<div><p>Theoretical investigations are carried out of optical transitions of a polar disc with a conical disclination and under the influence of a parallel applied uniform magnetic field. Additional confinement of the electron is due to an intrinsic electric confining potential of the polar disc modelled by any of the forms: infinite polar square well (IPSW), parabolic potential (PP) and shifted parabolic potential (SPP). As is well known, the parallel applied magnetic field lifts the double degeneracy of the non-zero azimuthal quantum number <i>m</i> electronic states. This Zeeman splitting is such that the <span>(m&gt;0)</span>electron energy sub-bands increase monotonically with an increase of the magnetic field, while the <span>(m&lt;0)</span>states initially decrease as the magnetic field is increased. Now, in systems with cylindrical symmetry, the allowed optical transitions are those between the electron’s states whose azimuthal quantum numbers differ by unity. The conical disclination is characterized by a kink parameter which is <span>(kappa &lt;1)</span> for a segment cut off from the disc and <span>(kappa &gt;1)</span> for a segment introduced into the polar disc. An increase of <span>(|kappa |)</span> leads to a decrease of transition energies, which in turn gives rise to an increase of the corresponding transition rates of optical transitions. Thus, peaks of transition rates get red shifted as the kink parameter increases. Additionally, the magnitude of the transition rates increases with the increasing value of the kink parameter. The magnetic field enhances transition energies involving states with angular momentum in one direction (here, those with positive angular momentum number <i>m</i>), while it decreases those involving states with angular momentum in the opposite direction (negative <i>m</i> states). It has also been found that parallel magnetic field blue shifts peaks of rates of transitions involving the <span>(m&gt;0)</span> states, while it red shifts peaks of those involving the <span>(m&lt;0)</span> states. The parabolic potential enhances transition energies, while the shifted parabolic potential reduces the transition energies. Consequently, the parabolic potential blue shifts peaks of transition rates, while the shifted parabolic potential red shifts the peaks. The results presented here suggest that a conical disclination and the overall confinement potential can be employed to tune and modulate the optical transition rates of a quantum disc.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05909-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An investigation into gold nanoparticle-doped sodium-variety zinc borate glasses for gamma and neutron shielding applications
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-22 DOI: 10.1140/epjp/s13360-024-05926-1
Sangeeta B. Kolavekar, G. B. Hiremath, N. M. Badiger, N. H. Ayachit
{"title":"An investigation into gold nanoparticle-doped sodium-variety zinc borate glasses for gamma and neutron shielding applications","authors":"Sangeeta B. Kolavekar,&nbsp;G. B. Hiremath,&nbsp;N. M. Badiger,&nbsp;N. H. Ayachit","doi":"10.1140/epjp/s13360-024-05926-1","DOIUrl":"10.1140/epjp/s13360-024-05926-1","url":null,"abstract":"<div><p>Sodium-zinc borate glasses doped with gold nanoparticles have promising shielding properties against gamma rays and neutrons due to several advantageous properties. In the present work, gamma interaction parameters such as MAC, <i>Z</i><sub>eff</sub>, EBF, and EABF have been investigated in the energy range from 0.015 to 15 MeV using Phy-X/PSD software. <i>Z</i><sub>eff</sub> values are found to be higher for 3BZNA and lower for 1BZNA in the medium and higher energy regions. It is also found that 3BZNA glass has lower MFP values than 1BZNA, indicating that 3BZNA glass is the best material for shielding gamma radiation. The MFP data demonstrate that, for energies greater than 1 MeV, BZNA glasses offer superior gamma radiation shielding compared to commercial glass and ordinary concrete. Furthermore, as compared to other glass types, the <i>Z</i><sub>eff</sub> of the 3BZNA version performs better at energies above 0.08 MeV. 3BZNA glass performs better than OC, BMC, SMC, and water in terms of FNRCS values. According to these findings, 3BZNA glass shows promise as a radiation shielding material.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring multistability and bifurcations in a three-species Smith growth model incorporating refuge, harvesting, and time delays
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-22 DOI: 10.1140/epjp/s13360-024-05874-w
Nazmul Sk, Sayan Mandal, Pankaj Kumar Tiwari, Joydev Chattopadhyay
{"title":"Exploring multistability and bifurcations in a three-species Smith growth model incorporating refuge, harvesting, and time delays","authors":"Nazmul Sk,&nbsp;Sayan Mandal,&nbsp;Pankaj Kumar Tiwari,&nbsp;Joydev Chattopadhyay","doi":"10.1140/epjp/s13360-024-05874-w","DOIUrl":"10.1140/epjp/s13360-024-05874-w","url":null,"abstract":"<div><p>This study delves into a tritrophic ecological model encompassing three distinct species, elucidating predator–prey dynamics through the lens of Smith growth pattern. The model integrates several pivotal ecological elements, including an additive Allee effect dictating prey growth, a ratio-dependent functional response characterizing predator–prey interactions, the provision of refuge for intermediate predators, and the incorporation of a Michaelis–Menten-type harvesting mechanism of the top predators. Moreover, we incorporate gestation and harvesting delays as novel factors to scrutinize their impact on the overall dynamics of the food web system. Through an extensive analysis of the delayed and non-delayed models, our investigation rigorously explores the equilibrium points, stability attributes, and bifurcations structures. In the absence of time delay, our findings underscore the profound influence wielded by factors such as refuge availability, Allee effect, harvesting, and the availability of environmental resources in dictating the survival prospects of the involved species. Furthermore, our exploratory analysis uncovers a rich tapestry of intricate dynamics, encompassing chaotic behavior, periodic oscillations and, multistability. These revelations underscore the profound complexity inherent in the ecosystem, particularly accentuated by the temporal delays involved in gestation and harvesting processes. The nuanced interplay between these temporal delays and ecological parameters contributes to the emergence of diverse and complex dynamics, elucidating the intricate nature of the ecological systems.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proton-induced nuclear reactions on barium-136 for the production of the medically relevant radionuclide lanthanum-135
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-22 DOI: 10.1140/epjp/s13360-024-05917-2
I. A. Khomenko, E. S. Kormazeva, T. V. Bogomolova, E. B. Furkina, V. I. Novikov, R. A. Aliev
{"title":"Proton-induced nuclear reactions on barium-136 for the production of the medically relevant radionuclide lanthanum-135","authors":"I. A. Khomenko,&nbsp;E. S. Kormazeva,&nbsp;T. V. Bogomolova,&nbsp;E. B. Furkina,&nbsp;V. I. Novikov,&nbsp;R. A. Aliev","doi":"10.1140/epjp/s13360-024-05917-2","DOIUrl":"10.1140/epjp/s13360-024-05917-2","url":null,"abstract":"<div><p>The cross-sections of <sup>136</sup>Ba(p,x) nuclear reactions were measured using the stack foil technique in the energy range of 29.3 → 14.0 MeV for the first time. We compared the experimental values with the data from the TENDL-2023 library. The yields of radionuclides formed during irradiation calculated by integrating the cross-sections are: 951 MBq/(μA·h) for <sup>135</sup>La, 12 MBq/(μA·h) for <sup>133</sup>La, 30 MBq/(μA·h) for <sup>135m</sup>Ba, and 0.3 MBq/(μA·h) for <sup>132</sup>Cs. It was shown that the <sup>136</sup>Ba(p,2n)<sup>135</sup>La reaction is suitable for production of <sup>135</sup>La for medicine in terms of activity and radioisotopic purity of the obtained product. Chromatographic separation of lanthanum radioisotopes from barium target was carried out using the TRU resin sorbent.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential biological and optoelectronic applications of AgO:ZnO nanocomposite synthesized by green approach 用绿色方法合成的 AgO:ZnO 纳米复合材料的潜在生物和光电应用
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-21 DOI: 10.1140/epjp/s13360-024-05920-7
Waleed R. Talib, Ashwin Sudhakaran, Allwin Sudhakaran, Raghad S. Mohammed
{"title":"Potential biological and optoelectronic applications of AgO:ZnO nanocomposite synthesized by green approach","authors":"Waleed R. Talib,&nbsp;Ashwin Sudhakaran,&nbsp;Allwin Sudhakaran,&nbsp;Raghad S. Mohammed","doi":"10.1140/epjp/s13360-024-05920-7","DOIUrl":"10.1140/epjp/s13360-024-05920-7","url":null,"abstract":"<div><p>This study aimed to estimate the potential optoelectronic and biological properties of AgO:ZnO nanocomposite synthesized by an environmentally friendly method. The synthesis of nanocomposite was carried out by reducing silver nitrate with <i>Salvia hispanica</i> extra, and zinc nitrate was mixed to produce the nanocomposite. An extensive examination was carried out on the physical and biological characteristics of the synthesized nanocomposite using several approaches. The EDX analysis confirmed the purity of the synthesized sample via the presence of elements Ag, Zn, and O only in the nanocomposite. The crystal structure of nanocomposite with hexagonal phase and average crystallite size of 56.8 nm was confirmed by X-ray diffraction. The formation of fibrous AgO:ZnO nanoparticles with an average diameter of 1.021 ± 0.6 μm was indicated by field-emission scanning electron microscopy examination. The optical property investigation revealed that the nanocomposite had a wide absorption band with an absorption peak at 425 nm. The observed phenomenon was attributable to the occurrence of electronic transitions within the material. The direct bandgap energy of 2.90 eV and the Urbach energy of 0.456 eV for the nanocomposite demonstrated the presence of defect states in the bandgap region. The measured values of the conduction band edge (<i>E</i><sub>CB</sub>) and valence band edge (<i>E</i><sub>VB</sub>) additionally revealed the material’s electronic structure. The biological potential of AgO:ZnO nanocomposite was evaluated by the agar well diffusion technique against Gram-positive and Gram-negative bacteria and a fungus. The extensive investigation of the AgO:ZnO nanocomposite’s characteristics has shown its potential for use in a wide range of photonic, optoelectronic, and biological applications.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting quantum evolutions of excitation energy transfer in a light-harvesting complex using multi-optimized recurrent neural networks
IF 2.8 3区 物理与天体物理
The European Physical Journal Plus Pub Date : 2024-12-21 DOI: 10.1140/epjp/s13360-024-05825-5
Shun-Cai Zhao, Yi-Meng Huang, Zi-Ran Zhao
{"title":"Predicting quantum evolutions of excitation energy transfer in a light-harvesting complex using multi-optimized recurrent neural networks","authors":"Shun-Cai Zhao,&nbsp;Yi-Meng Huang,&nbsp;Zi-Ran Zhao","doi":"10.1140/epjp/s13360-024-05825-5","DOIUrl":"10.1140/epjp/s13360-024-05825-5","url":null,"abstract":"<div><p>Constructing models to discover physics underlying magnanimous data is a traditional strategy in data mining which has been proved to be powerful and successful. In this work, a multi-optimized recurrent neural network (MRNN) is utilized to predict the dynamics of photosynthetic excitation energy transfer (EET) in a light-harvesting complex. The original data set produced by the master equation was trained to forecast the EET evolution. An agreement between our prediction and the theoretical deduction with an accuracy of over 99.26% is found, showing the validity of the proposed MRNN. A time-segment polynomial fitting multiplied by a unit step function results in a loss rate of the order of <span>(10^{-5})</span>, showing a striking consistence with analytical formulations for the photosynthetic EET. The work sets up a precedent for accurate EET prediction from large data set by establishing analytical descriptions for physics hidden behind, through minimizing the processing cost during the evolution of week-coupling EET.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信