{"title":"用谱启发的时间神经网络表征闪烁脉冲:粒子探测器信号的案例研究","authors":"Pengcheng Ai, Xiangming Sun, Zhi Deng, Xinchi Ran","doi":"10.1140/epjp/s13360-025-06385-y","DOIUrl":null,"url":null,"abstract":"<div><p>Particle detectors based on scintillators are widely used in high-energy physics and astroparticle physics experiments, nuclear medicine imaging, industrial and environmental detection, etc. Precisely extracting scintillation signal characteristics at the event level is important for these applications, not only in respect of understanding the scintillator itself, but also kinds and physical property of incident particles. Recent researches demonstrate data-driven neural networks surpass traditional statistical methods, especially when the analytical form of signals is hard to obtain, or noise is significant. However, most densely connected or convolution-based networks fail to fully exploit the spectral and temporal structure of scintillation signals, leaving large space for performance improvement. In this paper, we propose a network architecture specially tailored for scintillation pulse characterization based on previous works on time series analysis. The core insight is that, by directly applying fast Fourier transform on original signals and utilizing different frequency components, the proposed network architecture can serve as a lightweight and enhanced representation learning backbone. We prove our idea in two case studies: (a) simulation data generated with the setting of the LUX dark matter detector and (b) experimental electrical signals with fast electronics to emulate scintillation variations for the NICA/MPD calorimeter. The proposed model achieves significantly better results than the reference model in the literature and densely connected models and demonstrates higher cost-efficiency than conventional machine learning methods.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scintillation pulse characterization with spectrum-inspired temporal neural networks: case studies on particle detector signals\",\"authors\":\"Pengcheng Ai, Xiangming Sun, Zhi Deng, Xinchi Ran\",\"doi\":\"10.1140/epjp/s13360-025-06385-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Particle detectors based on scintillators are widely used in high-energy physics and astroparticle physics experiments, nuclear medicine imaging, industrial and environmental detection, etc. Precisely extracting scintillation signal characteristics at the event level is important for these applications, not only in respect of understanding the scintillator itself, but also kinds and physical property of incident particles. Recent researches demonstrate data-driven neural networks surpass traditional statistical methods, especially when the analytical form of signals is hard to obtain, or noise is significant. However, most densely connected or convolution-based networks fail to fully exploit the spectral and temporal structure of scintillation signals, leaving large space for performance improvement. In this paper, we propose a network architecture specially tailored for scintillation pulse characterization based on previous works on time series analysis. The core insight is that, by directly applying fast Fourier transform on original signals and utilizing different frequency components, the proposed network architecture can serve as a lightweight and enhanced representation learning backbone. We prove our idea in two case studies: (a) simulation data generated with the setting of the LUX dark matter detector and (b) experimental electrical signals with fast electronics to emulate scintillation variations for the NICA/MPD calorimeter. The proposed model achieves significantly better results than the reference model in the literature and densely connected models and demonstrates higher cost-efficiency than conventional machine learning methods.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"140 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-025-06385-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06385-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Scintillation pulse characterization with spectrum-inspired temporal neural networks: case studies on particle detector signals
Particle detectors based on scintillators are widely used in high-energy physics and astroparticle physics experiments, nuclear medicine imaging, industrial and environmental detection, etc. Precisely extracting scintillation signal characteristics at the event level is important for these applications, not only in respect of understanding the scintillator itself, but also kinds and physical property of incident particles. Recent researches demonstrate data-driven neural networks surpass traditional statistical methods, especially when the analytical form of signals is hard to obtain, or noise is significant. However, most densely connected or convolution-based networks fail to fully exploit the spectral and temporal structure of scintillation signals, leaving large space for performance improvement. In this paper, we propose a network architecture specially tailored for scintillation pulse characterization based on previous works on time series analysis. The core insight is that, by directly applying fast Fourier transform on original signals and utilizing different frequency components, the proposed network architecture can serve as a lightweight and enhanced representation learning backbone. We prove our idea in two case studies: (a) simulation data generated with the setting of the LUX dark matter detector and (b) experimental electrical signals with fast electronics to emulate scintillation variations for the NICA/MPD calorimeter. The proposed model achieves significantly better results than the reference model in the literature and densely connected models and demonstrates higher cost-efficiency than conventional machine learning methods.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.