{"title":"Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces","authors":"Gokul Upadhyay, Rajeev Kapri, Abhishek Chaudhuri","doi":"10.1140/epje/s10189-024-00417-8","DOIUrl":"10.1140/epje/s10189-024-00417-8","url":null,"abstract":"<p>We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali N. A. Koam, Ali Ahmad, Shahid Zaman, Ibtisam Masmali, Haleemah Ghazwani
{"title":"Fundamental aspects of the molecular topology of fuchsine acid dye with connection numbers","authors":"Ali N. A. Koam, Ali Ahmad, Shahid Zaman, Ibtisam Masmali, Haleemah Ghazwani","doi":"10.1140/epje/s10189-024-00418-7","DOIUrl":"10.1140/epje/s10189-024-00418-7","url":null,"abstract":"<p>Fuchsine acid serves as a supramolecular dye in Masson’s trichrome stain, finding extensive applications in histology. It is also utilized with picric acid in Van Gieson’s method to reveal red collagen fibers and in Masson’s trichrome to highlight smooth muscle in contrast to collagen. Beyond these applications, it plays a crucial role in electronic fields and photonic devices as an organic semiconductor. Therefore, investigating and predicting the complex molecular structure of fuchsine acid becomes essential, serving as the foundation for understanding its physicochemical features. This article employs topological modeling, specifically a connection number edge partition, to explore the supramolecular nature of fuchsine acid. Closed formulae for key degree-based molecular descriptors are derived, aiming to illuminate the effectiveness of these descriptors for QSAR and QSPR analyses.</p><p>The 2D structure of fuchsine graph with connection numbers</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative comparison of cell–cell detachment force in different experimental setups","authors":"Amit Singh Vishen, Jacques Prost, Pierre Sens","doi":"10.1140/epje/s10189-024-00416-9","DOIUrl":"10.1140/epje/s10189-024-00416-9","url":null,"abstract":"<p>We compare three different setups for measuring cell–cell adhesion. We show that the measured strength depends on the type of setup that is used. For identical cells different assays measure different detachment forces. This can be understood from the fact that cell–cell detachment is a global property of the system. We also analyse the role of external force and line tension on contact angle and cell–cell detachment. Comparison with the experiments suggest that viscous forces play an important role in the process. We dedicate this article to Fyl Pincus who for many of us is an example to be followed not only for outstanding science but also for a marvelous human behavior.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical convergence in mixed populations of mammalian epithelial cells","authors":"Estelle Gauquelin, Keisuke Kuromiya, Toshinori Namba, Keisuke Ikawa, Yasuyuki Fujita, Shuji Ishihara, Kaoru Sugimura","doi":"10.1140/epje/s10189-024-00415-w","DOIUrl":"10.1140/epje/s10189-024-00415-w","url":null,"abstract":"<p>Tissues consist of cells with different molecular and/or mechanical properties. Measuring the forces and stresses in mixed-cell populations is essential for understanding the mechanisms by which tissue development, homeostasis, and disease emerge from the cooperation of distinct cell types. However, many previous studies have primarily focused their mechanical measurements on dissociated cells or aggregates of a single-cell type, leaving the mechanics of mixed-cell populations largely unexplored. In the present study, we aimed to elucidate the influence of interactions between different cell types on cell mechanics by conducting in situ mechanical measurements on a monolayer of mammalian epithelial cells. Our findings revealed that while individual cell types displayed varying magnitudes of traction and intercellular stress before mixing, these mechanical values shifted in the mixed monolayer, becoming nearly indistinguishable between the cell types. Moreover, by analyzing a mixed-phase model of active tissues, we identified physical conditions under which such mechanical convergence is induced. Overall, the present study underscores the importance of in situ mechanical measurements in mixed-cell populations to deepen our understanding of the mechanics of multicellular systems.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Virial equation of state for a granular system","authors":"Subhanker Howlader, Prasenjit Das","doi":"10.1140/epje/s10189-024-00412-z","DOIUrl":"10.1140/epje/s10189-024-00412-z","url":null,"abstract":"<p>The equation of state for an ideal gas is simple, which is <span>(P=nk_textrm{B}T)</span>. In the case of imperfect gases where mutual interactions among the constituents are important, pressure <i>P</i> can be expressed as the series expansion of density <i>n</i> with appropriate coefficients, known as virial coefficients <span>(B_m)</span>. In this paper, we have obtained the first four virial coefficients for a model interaction potential <span>(Phi (r))</span> using multidimensional Monte-Carlo integration and importance sampling methods. Next, we perform molecular dynamics simulations with the same <span>(Phi (r))</span> for a many-particle system to obtain <i>P</i> as a function of <i>T</i> and <i>n</i>. We compare our numerical data with the virial equation of state.</p><p>The plot of Mayer function <i>f</i>(<i>r</i>) as a function of radial distance <i>r</i> for <span>(Theta (r))</span> for different inverse temperature <span>(beta )</span>.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vibrational spectrum of Granular packings with random matrices","authors":"Onuttom Narayan, Harsh Mathur","doi":"10.1140/epje/s10189-024-00414-x","DOIUrl":"10.1140/epje/s10189-024-00414-x","url":null,"abstract":"<p>The vibrational spectrum of granular packings can be used as a signature of the jamming transition, with the density of states at zero frequency becoming nonzero at the transition. It has been proposed previously that the vibrational spectrum of granular packings can be approximately obtained from random matrix theory. Here, we show that the autocorrelation function of the density of states shows good agreement between dynamical numerical simulations of frictionless bead packs near the jamming point and the analytic predictions of the Laguerre orthogonal ensemble of random matrices; there is clear disagreement with the Gaussian orthogonal ensemble, establishing that the Laguerre ensemble correctly reproduces the universal statistical properties of jammed granular matter and excluding the Gaussian orthogonal ensemble. We also present a random lattice model which is a physically motivated variant of the random matrix ensemble. Numerical calculations reveal that this model reproduces the known features of the vibrational density of states of frictionless granular matter, while also retaining the correlation structure seen in the Laguerre random matrix theory.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140108738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shing-Yun Chang, Sahil R. Vora, Charles D. Young, Abhishek Shetty, Anson W. K. Ma
{"title":"Viscoelasticity of a carbon nanotube-laden air–water interface","authors":"Shing-Yun Chang, Sahil R. Vora, Charles D. Young, Abhishek Shetty, Anson W. K. Ma","doi":"10.1140/epje/s10189-024-00411-0","DOIUrl":"10.1140/epje/s10189-024-00411-0","url":null,"abstract":"<div><p>The viscoelasticity of a carbon nanotube (CNT)-laden air–water interface was characterized using two different experimental methods. The first experimental method used a Langmuir-Pockels (LP) trough coupled with a pair of oscillating barriers. The second method is termed the Bicone-Trough (BT) method, where a LP trough was custom-built and fit onto a rheometer equipped with a bicone fixture to standardize the preparation and conditioning of a particle-laden interface especially at high particle coverages. The performance of both methods was evaluated by performing Fast Fourier Transform (FFT) analysis to calculate the signal-to-noise ratios (SNR). Overall, the rheometer-based BT method offered better strain control and considerably higher SNRs compared to the Oscillatory Barriers (OB) method that oscillated barriers with relatively limited positional and speed control. For a CNT surface coverage of 165 mg/m<sup>2</sup> and a frequency of 100 mHz, the interfacial shear modulus obtained from the OB method increased from 39 to 57 mN/m as the normal strain amplitude increased from 1 to 3%. No linear viscoelastic regime was experimentally observed for a normal strain as small as 0.5%. In the BT method, a linear regime was observed below a shear strain of 0.1%. The interfacial shear modulus decreased significantly from 96 to 2 mN/m as the shear strain amplitude increased from 0.025 to 10%.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Using two different experimental methods to characterize the interfacial rheology of a carbon nanotube-laden air-water interface</p></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Zidi, B. Darbois Texier, G. Gauthier, A. Seguin
{"title":"Viscosimetric squeeze flow of suspensions","authors":"K. Zidi, B. Darbois Texier, G. Gauthier, A. Seguin","doi":"10.1140/epje/s10189-024-00410-1","DOIUrl":"10.1140/epje/s10189-024-00410-1","url":null,"abstract":"<p>The rheology of particle suspensions has been extensively explored in the case of a simple shear flow, but less in other flow configurations which are also important in practice. Here we investigate the behavior of a suspension in a squeeze flow, which we revisit using local pressure measurements to deduce the effective viscosity. The flow is generated by approaching a moving disk to a fixed wall at constant velocity in the low Reynolds number limit. We measure the evolution of the pressure field at the wall and deduce the effective viscosity from the radial pressure drop. After validation of our device using a Newtonian fluid, we measure the effective viscosity of a suspension for different squeezing speeds and volume fractions of particles. We find results in agreement with the Maron–Pierce law, an empirical expression for the viscosity of suspensions that was established for simple shear flows. We prove that this method to determine viscosity remains valid in the limit of large gap width. This makes it possible to study the rheology of suspensions within this limit and therefore suspensions composed of large particles, in contrast to Couette flow cells which require small gaps.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 3","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanosensitivity of phase separation in an elastic gel","authors":"Dan Deviri, Samuel A. Safran","doi":"10.1140/epje/s10189-024-00405-y","DOIUrl":"10.1140/epje/s10189-024-00405-y","url":null,"abstract":"<p>Liquid–liquid phase separation (LLPS) in binary or multi-component solutions is a well-studied subject in soft matter with extensive applications in biological systems. In recent years, several experimental studies focused on LLPS of solutes in hydrated gels, where the formation of coexisting domains induces elastic deformations within the gel. While the experimental studies report unique physical characteristics of these systems, such as sensitivity to mechanical forces and stabilization of multiple, periodic phase-separated domains, the theoretical understanding of such systems and the role of long-range interactions have not emphasized the nonlinear nature of the equilibrium binodal for strong segregation of the solute. In this paper, we formulate a generic, mean-field theory of a hydrated gel in the presence of an additional solute which changes the elastic properties of the gel. We derive equations for the equilibrium binodal of the phase separation of the solvent and solute and show that the deformations induced by the solute can result in effective long-range interactions between phase-separating solutes that can either enhance or, in the case of externally applied pressure, suppress phase separation of the solute relative to the case where there is no gel. This causes the coexisting concentrations at the binodal to depend on the system-wide average concentration, in contrast to the situation for phase separation in the absence of the gel.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139904754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Many-body interactions between contracting living cells","authors":"Roman Golkov, Yair Shokef","doi":"10.1140/epje/s10189-024-00407-w","DOIUrl":"10.1140/epje/s10189-024-00407-w","url":null,"abstract":"<p>The organization of live cells into tissues and their subsequent biological function involves inter-cell mechanical interactions, which are mediated by their elastic environment. To model this interaction, we consider cells as spherical active force dipoles surrounded by an unbounded elastic matrix. Even though we assume that this elastic medium responds linearly, each cell’s regulation of its mechanical activity leads to nonlinearities in the emergent interactions between cells. We study the many-body nature of these interactions by considering several geometries that include three or more cells. We show that for different regulatory behaviors of the cells’ activity, the total elastic energy stored in the medium differs from the superposition of all two-body interactions between pairs of cells within the system. Specifically, we find that the many-body interaction energy between cells that regulate their position is smaller than the sum of interactions between all pairs of cells in the system, while for cells that do not regulate their position, the many-body interaction is larger than the superposition prediction. Thus, such higher-order interactions should be considered when studying the mechanics of multiple cells in proximity.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}