Samuel Tovey, Christoph Lohrmann, Tobias Merkt, David Zimmer, Konstantin Nikolaou, Simon Koppenhöfer, Anna Bushmakina, Jonas Scheunemann, Christian Holm
{"title":"swarm:构建智能主动系统的未来","authors":"Samuel Tovey, Christoph Lohrmann, Tobias Merkt, David Zimmer, Konstantin Nikolaou, Simon Koppenhöfer, Anna Bushmakina, Jonas Scheunemann, Christian Holm","doi":"10.1140/epje/s10189-025-00477-4","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces <span>SwarmRL</span>, a Python package designed to study intelligent active particles. <span>SwarmRL</span> provides an easy-to-use interface for developing models to control microscopic colloids using classical control and deep reinforcement learning approaches. These models may be deployed in simulations or real-world environments under a common framework. We explain the structure of the software and its key features and demonstrate how it can be used to accelerate research. With <span>SwarmRL</span>, we aim to streamline research into micro-robotic control while bridging the gap between experimental and simulation-driven sciences. <span>SwarmRL</span> is available open-source on GitHub at https://github.com/SwarmRL/SwarmRL.</p></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 4-5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00477-4.pdf","citationCount":"0","resultStr":"{\"title\":\"SwarmRL: building the future of smart active systems\",\"authors\":\"Samuel Tovey, Christoph Lohrmann, Tobias Merkt, David Zimmer, Konstantin Nikolaou, Simon Koppenhöfer, Anna Bushmakina, Jonas Scheunemann, Christian Holm\",\"doi\":\"10.1140/epje/s10189-025-00477-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work introduces <span>SwarmRL</span>, a Python package designed to study intelligent active particles. <span>SwarmRL</span> provides an easy-to-use interface for developing models to control microscopic colloids using classical control and deep reinforcement learning approaches. These models may be deployed in simulations or real-world environments under a common framework. We explain the structure of the software and its key features and demonstrate how it can be used to accelerate research. With <span>SwarmRL</span>, we aim to streamline research into micro-robotic control while bridging the gap between experimental and simulation-driven sciences. <span>SwarmRL</span> is available open-source on GitHub at https://github.com/SwarmRL/SwarmRL.</p></div>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 4-5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00477-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-025-00477-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00477-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
SwarmRL: building the future of smart active systems
This work introduces SwarmRL, a Python package designed to study intelligent active particles. SwarmRL provides an easy-to-use interface for developing models to control microscopic colloids using classical control and deep reinforcement learning approaches. These models may be deployed in simulations or real-world environments under a common framework. We explain the structure of the software and its key features and demonstrate how it can be used to accelerate research. With SwarmRL, we aim to streamline research into micro-robotic control while bridging the gap between experimental and simulation-driven sciences. SwarmRL is available open-source on GitHub at https://github.com/SwarmRL/SwarmRL.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.