医用泡沫中的吸水动力学:Lucas-Washburn模型的经验验证。

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Weihua Mu, Hui Sun, Lina Cao
{"title":"医用泡沫中的吸水动力学:Lucas-Washburn模型的经验验证。","authors":"Weihua Mu,&nbsp;Hui Sun,&nbsp;Lina Cao","doi":"10.1140/epje/s10189-025-00478-3","DOIUrl":null,"url":null,"abstract":"<p>This study extends the Lucas–Washburn theory through non-equilibrium thermodynamic analysis to examine fluid absorption in medical foams used for hemorrhage control. As a universal model for capillary flow in porous media, the theory demonstrated strong agreement with experimental results, confirming its semi-quantitative accuracy. Minor deviations, likely due to material heterogeneity, were observed and explained, enhancing the theory’s applicability to real-world conditions. Our findings underscore the universality of the Lucas–Washburn framework and provide valuable insights for optimizing the design of medical foams, ultimately contributing to more effective bleeding control solutions in clinical applications.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00478-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Water absorption dynamics in medical foam: empirical validation of the Lucas–Washburn model\",\"authors\":\"Weihua Mu,&nbsp;Hui Sun,&nbsp;Lina Cao\",\"doi\":\"10.1140/epje/s10189-025-00478-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study extends the Lucas–Washburn theory through non-equilibrium thermodynamic analysis to examine fluid absorption in medical foams used for hemorrhage control. As a universal model for capillary flow in porous media, the theory demonstrated strong agreement with experimental results, confirming its semi-quantitative accuracy. Minor deviations, likely due to material heterogeneity, were observed and explained, enhancing the theory’s applicability to real-world conditions. Our findings underscore the universality of the Lucas–Washburn framework and provide valuable insights for optimizing the design of medical foams, ultimately contributing to more effective bleeding control solutions in clinical applications.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00478-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-025-00478-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00478-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过非平衡热力学分析来扩展Lucas-Washburn理论,以检验用于出血控制的医用泡沫中的液体吸收。作为多孔介质中毛细管流动的通用模型,该理论与实验结果具有较强的一致性,证实了其半定量的准确性。微小的偏差,可能是由于材料的异质性,被观察和解释,提高了理论对现实世界条件的适用性。我们的研究结果强调了Lucas-Washburn框架的普遍性,并为优化医用泡沫的设计提供了有价值的见解,最终有助于在临床应用中提供更有效的出血控制解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water absorption dynamics in medical foam: empirical validation of the Lucas–Washburn model

This study extends the Lucas–Washburn theory through non-equilibrium thermodynamic analysis to examine fluid absorption in medical foams used for hemorrhage control. As a universal model for capillary flow in porous media, the theory demonstrated strong agreement with experimental results, confirming its semi-quantitative accuracy. Minor deviations, likely due to material heterogeneity, were observed and explained, enhancing the theory’s applicability to real-world conditions. Our findings underscore the universality of the Lucas–Washburn framework and provide valuable insights for optimizing the design of medical foams, ultimately contributing to more effective bleeding control solutions in clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信