Animal CognitionPub Date : 2024-03-02DOI: 10.1007/s10071-024-01848-8
Paola Crespo-Bojorque, Elodie Cauvet, Christophe Pallier, Juan M. Toro
{"title":"Recognizing structure in novel tunes: differences between human and rats","authors":"Paola Crespo-Bojorque, Elodie Cauvet, Christophe Pallier, Juan M. Toro","doi":"10.1007/s10071-024-01848-8","DOIUrl":"10.1007/s10071-024-01848-8","url":null,"abstract":"<div><p>A central feature in music is the hierarchical organization of its components. Musical pieces are not a simple concatenation of chords, but are characterized by rhythmic and harmonic structures. Here, we explore if sensitivity to music structure might emerge in the absence of any experience with musical stimuli. For this, we tested if rats detect the difference between structured and unstructured musical excerpts and compared their performance with that of humans. Structured melodies were excerpts of Mozart's sonatas. Unstructured melodies were created by the recombination of fragments of different sonatas. We trained listeners (both human participants and Long-Evans rats) with a set of structured and unstructured excerpts, and tested them with completely novel excerpts they had not heard before. After hundreds of training trials, rats were able to tell apart novel structured from unstructured melodies. Human listeners required only a few trials to reach better performance than rats. Interestingly, such performance was increased in humans when tonality changes were included, while it decreased to chance in rats. Our results suggest that, with enough training, rats might learn to discriminate acoustic differences differentiating hierarchical music structures from unstructured excerpts. More importantly, the results point toward species-specific adaptations on how tonality is processed.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2024-03-02DOI: 10.1007/s10071-024-01839-9
Mijke Müller, Neville Pillay
{"title":"Cognitive flexibility in urban yellow mongooses, Cynictis penicillata.","authors":"Mijke Müller, Neville Pillay","doi":"10.1007/s10071-024-01839-9","DOIUrl":"10.1007/s10071-024-01839-9","url":null,"abstract":"<p><p>Cognitive flexibility enables animals to alter their behaviour and respond appropriately to environmental changes. Such flexibility is important in urban settings where environmental changes occur rapidly and continually. We studied whether free-living, urban-dwelling yellow mongooses, Cynictis penicillata, in South Africa, are cognitively flexible in reversal learning and attention task experiments (n = 10). Reversal learning was conducted using two puzzle boxes that were distinct visually and spatially, each containing a preferred or non-preferred food type. Once mongooses learned which box contained the preferred food type, the food types were reversed. The mongooses successfully unlearned their previously learned response in favour of learning a new response, possibly through a win-stay, lose-shift strategy. Attention task experiments were conducted using one puzzle box surrounded by zero, one, two or three objects, introducing various levels of distraction while solving the task. The mongooses were distracted by two and three distractions but were able to solve the task despite the distractions by splitting their attention between the puzzle box task and remaining vigilant. However, those exposed to human residents more often were more vigilant. We provide the first evidence of cognitive flexibility in urban yellow mongooses, which enables them to modify their behaviour to urban environments.</p>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2024-03-02DOI: 10.1007/s10071-024-01858-6
Jakub Szymkowiak
{"title":"Auditory risk recognition is socially transmitted across territory borders in wild birds","authors":"Jakub Szymkowiak","doi":"10.1007/s10071-024-01858-6","DOIUrl":"10.1007/s10071-024-01858-6","url":null,"abstract":"<div><p>Prey species commonly assess predation risk based on acoustic signals, such as predator vocalizations or heterospecific alarm calls. The resulting risk-sensitive decision-making affects not only the behavior and life-history of individual prey, but also has far-reaching ecological consequences for population, community, and ecosystem dynamics. Although auditory risk recognition is ubiquitous in animals, it remains unclear how individuals gain the ability to recognize specific sounds as cues of a threat. Here, it has been shown that free-living birds (Wood Warblers <i>Phylloscopus sibilatrix</i>) can learn to recognize unfamiliar, complex sounds (samples of punk rock songs) as cues of a threat from conspecifics holding adjacent territories during the spring breeding season. In a playback experiment, Wood Warblers initially ignored the unfamiliar sounds, but after repeatedly hearing that these sounds trigger alarm calling reaction of neighbors, most individuals showed an anti-predator response to them. Moreover, once learned soon after nestlings hatching, the anti-predator response of parents toward previously unfamiliar sounds was then retained over the entire nestlings rearing period. These results demonstrate that social learning via the association of unfamiliar sounds with known alarm signals enables the spread of anti-predator behavior across territory borders and provides a mechanism explaining the widespread abilities of animals to assess predation risk based on acoustic cues.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2024-03-02DOI: 10.1007/s10071-024-01856-8
Alejandro Macías, Armando Machado, Marco Vasconcelos
{"title":"On the value of advanced information about delayed rewards.","authors":"Alejandro Macías, Armando Machado, Marco Vasconcelos","doi":"10.1007/s10071-024-01856-8","DOIUrl":"10.1007/s10071-024-01856-8","url":null,"abstract":"<p><p>In a variety of laboratory preparations, several animal species prefer signaled over unsignaled outcomes. Here we examine whether pigeons prefer options that signal the delay to reward over options that do not and how this preference changes with the ratio of the delays. We offered pigeons repeated choices between two alternatives leading to a short or a long delay to reward. For one alternative (informative), the short and long delays were reliably signaled by different stimuli (e.g., S<sup>S</sup> for short delays, S<sup>L</sup> for long delays). For the other (non-informative), the delays were not reliably signaled by the stimuli presented (S<sup>1</sup> and S<sup>2</sup>). Across conditions, we varied the durations of the short and long delays, hence their ratio, while keeping the average delay to reward constant. Pigeons preferred the informative over the non-informative option and this preference became stronger as the ratio of the long to the short delay increased. A modified version of the Δ-Σ hypothesis (González et al., J Exp Anal Behav 113(3):591-608. https://doi.org/10.1002/jeab.595 , 2020a) incorporating a contrast-like process between the immediacies to reward signaled by each stimulus accounted well for our findings. Functionally, we argue that a preference for signaled delays hinges on the potential instrumental advantage typically conveyed by information.</p>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10907439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2024-02-23DOI: 10.1007/s10071-024-01860-y
Marco Marini, Edoardo Colaiuda, Serena Gastaldi, Elsa Addessi, Fabio Paglieri
{"title":"Available and unavailable decoys in capuchin monkeys (Sapajus spp.) decision-making.","authors":"Marco Marini, Edoardo Colaiuda, Serena Gastaldi, Elsa Addessi, Fabio Paglieri","doi":"10.1007/s10071-024-01860-y","DOIUrl":"10.1007/s10071-024-01860-y","url":null,"abstract":"<p><p>Decision-making has been observed to be systematically affected by decoys, i.e., options that should be irrelevant, either because unavailable or because manifestly inferior to other alternatives, and yet shift preferences towards their target. Decoy effects have been extensively studied both in humans and in several other species; however, evidence in non-human primates remains scant and inconclusive. To address this gap, this study investigates how choices in capuchin monkeys (Sapajus spp.) are affected by different types of decoys: asymmetrically dominated decoys, i.e., available and unavailable options that are inferior to only one of the other alternatives, and phantom decoys, i.e., unavailable options that are superior to another available alternative. After controlling for the subjective strength of initial preferences and the distance of each decoy from its target in attribute space, results demonstrate a systematic shift in capuchins' preference towards the target of both asymmetrically dominated decoys (whether they are available or not) and phantom decoys, regardless of what options is being targeted by such decoys. This provides the most comprehensive evidence to date of decoy effects in non-human primates, with important theoretical and methodological implications for future comparative studies on context effects in decision-making.</p>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2024-02-22DOI: 10.1007/s10071-024-01859-5
Morgan Skinner, Gokulan Nagabaskaran, Tom Gantert, Noam Miller
{"title":"Bolder together: conformity drives behavioral plasticity in eastern gartersnakes.","authors":"Morgan Skinner, Gokulan Nagabaskaran, Tom Gantert, Noam Miller","doi":"10.1007/s10071-024-01859-5","DOIUrl":"10.1007/s10071-024-01859-5","url":null,"abstract":"<p><p>Personality traits drive individual differences in behaviour that are consistent across time and context. Personality limits behavioural plasticity, which could lead to maladaptive choices if animals cannot adapt their behavior to changing conditions. Here, we assessed consistency and flexibility in one personality trait, boldness, across non-social and social contexts in eastern gartersnakes (Thamnophis sirtalis sirtalis). Snakes explored a novel open arena either alone or in a pair. Pairs were assigned based on the data from the solo trials, such that each snake was paired once with a bolder and once with a less bold partner. We predicted that snakes would conform when in a social context, displaying plasticity in their personality, and causing boldness scores to converge. We found that snakes were consistent within contexts (solo or paired), but changed their behavior across contexts (from solo to paired). Plasticity in boldness resulted from an interaction between conformity and repeatable individual differences in plasticity. In line with some data on other species, snakes conformed more when they were the less bold partner. Personality reflects a consistent bias in decision-making, but our results highlight that the cognitive processes that drive the expression of personality traits in behavior are flexible and sensitive to social context. We show that both consistency and plasticity combine to shape snake social behavior in ways that are responsive to competition. This pattern of behavior may be particularly beneficial for species in which group-living is seasonal.</p>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2024-02-14DOI: 10.1007/s10071-024-01861-x
Anna Scandurra, Biagio D'Aniello, Maria Elena Pero, Claudia Pinelli, Alfredo Di Lucrezia, Raffaella Tudisco, Piera Iommelli, Vincenzo Mastellone, Pietro Lombardi
{"title":"Human social buffer in goats and dogs.","authors":"Anna Scandurra, Biagio D'Aniello, Maria Elena Pero, Claudia Pinelli, Alfredo Di Lucrezia, Raffaella Tudisco, Piera Iommelli, Vincenzo Mastellone, Pietro Lombardi","doi":"10.1007/s10071-024-01861-x","DOIUrl":"10.1007/s10071-024-01861-x","url":null,"abstract":"<p><p>The primary goal of this study was to explore the social buffering effect that humans offer to goats and dogs with limited exposure to human socialization, particularly in situations involving interactions with unfamiliar humans. A total of 13 dogs and 14 goats were selected for the study, all of which had limited prior socialization with humans. Each animal was placed in a testing room with unfamiliar humans for 15 min. Three experimenters aimed to establish a comfortable environment, encouraging social interaction by offering food to the animals and assessing the animals' willingness to accept food and their response to being approached and petted. If both conditions were satisfied, the animals were classified as \"social\". If one or none of the conditions were met, the animals were classified as \"not social\". Cortisol levels were measured by collecting blood samples before and after the test. Non-parametric tests together with a GzLM showed that the effect of human social buffering in goats was different in comparison to dogs: goats exhibited higher cortisol levels after the test, while dogs did not show a significant change. Further analysis demonstrated that \"social\" goats had a lower likelihood of experiencing significant changes in cortisol levels than dogs. Thus, once human interactions are accepted, both species could benefit from social buffering. In summary, this study enhances our understanding of how dogs and goats respond to social interactions with humans in the social buffering effect.</p>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2023-12-02DOI: 10.1007/s10071-023-01825-7
Peter Sterling, Simon Laughlin
{"title":"Why an animal needs a brain","authors":"Peter Sterling, Simon Laughlin","doi":"10.1007/s10071-023-01825-7","DOIUrl":"10.1007/s10071-023-01825-7","url":null,"abstract":"<div><p>In <i>Principles of Neural Design</i> (2015, MIT Press), inspired by Charles Darwin, Sterling and Laughlin undertook the unfashionable task of distilling principles from facts in the technique-driven, data-saturated domain of neuroscience. Their starting point for deriving the organizing principles of brains are two brainless single-celled organisms, <i>Escherichia coli</i> and <i>Paramecium</i>, and the 302-neuron brain of the nematode <i>Caenorhabditis elegans</i>. The book is an exemplar in how to connect the dots between simpler and (much) more complex organisms in a particular area. Here, they have generously agreed to republish an abridged version of Chapter 2 (Why an Animal Needs a Brain), in which many of their principles are first described.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138469751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal CognitionPub Date : 2023-11-28DOI: 10.1007/s10071-023-01833-7
Leonid L. Moroz, Daria Y. Romanova
{"title":"Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals","authors":"Leonid L. Moroz, Daria Y. Romanova","doi":"10.1007/s10071-023-01833-7","DOIUrl":"10.1007/s10071-023-01833-7","url":null,"abstract":"<div><p>Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a <i>chemical connectome</i> mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap—dynamic, multifunctional chemical micro-environments in nervous systems—is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call <i>chemoconnectomics</i> and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}