Joseph Krahn, Amin Azadian, Camila Cavalli, Julia Miller, Alexandra Protopopova
{"title":"会前辨别力训练对狗的判断偏差测试成绩的影响","authors":"Joseph Krahn, Amin Azadian, Camila Cavalli, Julia Miller, Alexandra Protopopova","doi":"10.1007/s10071-024-01905-2","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial judgement bias tests (JBTs) can involve teaching animals that a bowl provides a reward in one location but does not in another. The animal is then presented with the bowl placed between the rewarded and the unrewarded locations (i.e., ambiguous locations) and their latency to approach reflects expectation of reward or ‘optimism’. Some suggest that greater ‘optimism’ indicates better welfare. Performance in JBTs, however, may also indicate a learning history independently from welfare determinants. We hypothesized that dogs’ ‘optimism’ in a follow-up JBT may be impacted by a learning treatment involving additional trials of a different discrimination task. Once enrolled, companion dogs (<i>n</i> = 16) were required to complete three study phases: (1) a pre-treatment JBT, (2) a learning treatment, and (3) a post-treatment JBT. During the JBTs, dogs were presented with five locations: one rewarded, one unrewarded, and three ambiguous (all unrewarded). Dogs were randomly assigned to a trial-based learning task—a nose-touch to the palm of the hand. In the Experimental discrimination treatment phase (<i>n</i> = 8), dogs were presented with two hands in each trial and only rewarded for touching one specific hand. In the Control treatment phase (<i>n</i> = 8), dogs were presented with one hand per trial in alternating sequence and were yoked to dogs in the Experimental group to receive the same number of rewarded and unrewarded trials (to control for possible frustration). Using a repeated measures mixed model with JBT repeated within dog, we found no difference in the change in approach latency to the ambiguous locations between the dogs across treatments. ‘Optimism’ as measured in this JBT was not altered by the additional discrimination trials used in our study.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10071-024-01905-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of pre-session discrimination training on performance in a judgement bias test in dogs\",\"authors\":\"Joseph Krahn, Amin Azadian, Camila Cavalli, Julia Miller, Alexandra Protopopova\",\"doi\":\"10.1007/s10071-024-01905-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial judgement bias tests (JBTs) can involve teaching animals that a bowl provides a reward in one location but does not in another. The animal is then presented with the bowl placed between the rewarded and the unrewarded locations (i.e., ambiguous locations) and their latency to approach reflects expectation of reward or ‘optimism’. Some suggest that greater ‘optimism’ indicates better welfare. Performance in JBTs, however, may also indicate a learning history independently from welfare determinants. We hypothesized that dogs’ ‘optimism’ in a follow-up JBT may be impacted by a learning treatment involving additional trials of a different discrimination task. Once enrolled, companion dogs (<i>n</i> = 16) were required to complete three study phases: (1) a pre-treatment JBT, (2) a learning treatment, and (3) a post-treatment JBT. During the JBTs, dogs were presented with five locations: one rewarded, one unrewarded, and three ambiguous (all unrewarded). Dogs were randomly assigned to a trial-based learning task—a nose-touch to the palm of the hand. In the Experimental discrimination treatment phase (<i>n</i> = 8), dogs were presented with two hands in each trial and only rewarded for touching one specific hand. In the Control treatment phase (<i>n</i> = 8), dogs were presented with one hand per trial in alternating sequence and were yoked to dogs in the Experimental group to receive the same number of rewarded and unrewarded trials (to control for possible frustration). Using a repeated measures mixed model with JBT repeated within dog, we found no difference in the change in approach latency to the ambiguous locations between the dogs across treatments. ‘Optimism’ as measured in this JBT was not altered by the additional discrimination trials used in our study.</p></div>\",\"PeriodicalId\":7879,\"journal\":{\"name\":\"Animal Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10071-024-01905-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10071-024-01905-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cognition","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10071-024-01905-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Effect of pre-session discrimination training on performance in a judgement bias test in dogs
Spatial judgement bias tests (JBTs) can involve teaching animals that a bowl provides a reward in one location but does not in another. The animal is then presented with the bowl placed between the rewarded and the unrewarded locations (i.e., ambiguous locations) and their latency to approach reflects expectation of reward or ‘optimism’. Some suggest that greater ‘optimism’ indicates better welfare. Performance in JBTs, however, may also indicate a learning history independently from welfare determinants. We hypothesized that dogs’ ‘optimism’ in a follow-up JBT may be impacted by a learning treatment involving additional trials of a different discrimination task. Once enrolled, companion dogs (n = 16) were required to complete three study phases: (1) a pre-treatment JBT, (2) a learning treatment, and (3) a post-treatment JBT. During the JBTs, dogs were presented with five locations: one rewarded, one unrewarded, and three ambiguous (all unrewarded). Dogs were randomly assigned to a trial-based learning task—a nose-touch to the palm of the hand. In the Experimental discrimination treatment phase (n = 8), dogs were presented with two hands in each trial and only rewarded for touching one specific hand. In the Control treatment phase (n = 8), dogs were presented with one hand per trial in alternating sequence and were yoked to dogs in the Experimental group to receive the same number of rewarded and unrewarded trials (to control for possible frustration). Using a repeated measures mixed model with JBT repeated within dog, we found no difference in the change in approach latency to the ambiguous locations between the dogs across treatments. ‘Optimism’ as measured in this JBT was not altered by the additional discrimination trials used in our study.
期刊介绍:
Animal Cognition is an interdisciplinary journal offering current research from many disciplines (ethology, behavioral ecology, animal behavior and learning, cognitive sciences, comparative psychology and evolutionary psychology) on all aspects of animal (and human) cognition in an evolutionary framework.
Animal Cognition publishes original empirical and theoretical work, reviews, methods papers, short communications and correspondence on the mechanisms and evolution of biologically rooted cognitive-intellectual structures.
The journal explores animal time perception and use; causality detection; innate reaction patterns and innate bases of learning; numerical competence and frequency expectancies; symbol use; communication; problem solving, animal thinking and use of tools, and the modularity of the mind.