Surface Engineering and Applied Electrochemistry最新文献

筛选
英文 中文
Chapter 6. Surface Mount Assembly of Electronic Modules 第 6 章 表面贴装电子模块的表面贴装
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700066
V. L. Lanin, V. A. Emel’yanov, I. B. Petukhov
{"title":"Chapter 6. Surface Mount Assembly of Electronic Modules","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petukhov","doi":"10.3103/S1068375524700066","DOIUrl":"10.3103/S1068375524700066","url":null,"abstract":"<p>Surface mounting, as a constructive-technological approach in miniaturizing fourth-generation electronic equipment, has yielded significant advancements. These include the miniaturization of structural elements, a two- to three-fold increase in mounting density, decreased material consumption, and enhanced resistance to vibration—a critical factor ensuring equipment reliability. Shortening the lead length has correspondingly diminished parasitic inductance, capacitance, and resistance, thereby improving electrical parameters and bolstering equipment reliability. This chapter presents a classification of surface mounting varieties and discusses the technological equipment used for applying solder paste, placement and soldering components. The soldering of SMD components using solder pastes necessitates precise individual temperature profiling of heating for each board size, typically facilitated by a microcontroller. Soldering modes, governed by the melting of solder pastes, are determined by a temperature–time diagram, which is meticulously optimized for IR ovens with multiple heating zones. The chapter also addresses the primary defects encountered in surface mounting processes and delineates measures for their effective elimination.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"374 - 407"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 8. Assembly and Mounting of Microwave Micromodules and Microblocks 第 8 章 装配和安装微波微模块和微块的组装与安装
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S106837552470008X
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 8. Assembly and Mounting of Microwave Micromodules and Microblocks","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S106837552470008X","DOIUrl":"10.3103/S106837552470008X","url":null,"abstract":"<p>The examination of structural and technological features of microwave (MW) modules, along with trends in their development, is a focal point of this chapter. Detailed descriptions are given concerning the technological operations entailed in assembling MW microblocks, capable of operating at frequencies up to 20 GHz, inclusive of vibrational and ultrasonic soldering. Investigative efforts delve into dependences concerning the degree of wetting of microstrips in response to exposure time to ultrasonic (US) vibrations. These investigations reveal that optimal wetting within a 15-s timeframe is achieved for Sn–Pb solder and galvanic coating with a tin–bismuth alloy. This favorable outcome is attributed to the superior fluidity exhibited by this solder in comparison to Sn–In solder, as well as the absence of intermetallic formation during the soldering process of tin–bismuth coatings, which deteriorates the wetting process, as in the case of gold coatings. The implementation of US vibrations in pulse mode, characterized by pulse frequencies ranging from 0.5 to 10 Hz and depths of 2 to 6, aims to mitigate the formation of wave superpositions leading to the development of nodes and lobes of displacement amplitude in the solder. By localizing a homogeneous cavitation process within the molten solder, this methodology facilitates the simultaneous destruction of oxide films across the entire soldered surface of the microstrip board, thereby creating conducive conditions for complete wetting of the board surface by the solder, without the use of fluxes. The use of high-frequency heating in combination with a ferrite magnetic circuit during the sealing of microblock packages composed of diamagnetic alloys is explored. This approach serves to enhance process efficiency, augment the reliability of microelectronic devices, and facilitate the substitution of lead-free solders for conventional tin–cadmium and tin–bismuth solders, thus addressing environmental concerns and regulatory requirements.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"454 - 462"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 4. Physicochemical Foundations of Electric Mounting Soldering 第 4 章 物理化学基础电安装焊接的物理化学基础
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700042
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 4. Physicochemical Foundations of Electric Mounting Soldering","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700042","DOIUrl":"10.3103/S1068375524700042","url":null,"abstract":"<p>To ensure the formation of high-quality solder joints, it is imperative to engage in surface preparation of the materials being joined, activate both the materials and solder, eliminate oxide films in the contact zone, facilitate interaction at the interfacial boundary, and induce crystallization of the liquid metal layer. This chapter delves into the processes involved in removing surface oxide films from solderable surfaces and discusses the pertinent equipment employed. Additionally, it highlights the potential efficacy of ultrasonic methods in oxide film removal through the introduction of elastic mechanical vibrations into the molten solder. Mathematical expressions are derived to elucidate the dynamics at the solder-surface interface, during the capillary penetration of solder into gaps and the diffusion process. The formation of a soldered joint with a specific structure results from the physicochemical interaction between the solder and the base metal. This joint typically encompasses a melting zone and diffusion zone at the solder and the base metal interface. The ultimate structure and composition of the solder joint depend on the nature of the interacting metals, their chemical affinity, and the soldering conditions, including time and temperature.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"332 - 341"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 12: Microassembly of Integrated Circuits and Micromodules 第 12 章:集成电路和微型模块的微组装
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700121
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 12: Microassembly of Integrated Circuits and Micromodules","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700121","DOIUrl":"10.3103/S1068375524700121","url":null,"abstract":"<p>Wire bonding remains a primary method for assembling integrated circuits and micromodules due to its high process automation and versatility across manufacturing technological options, as well as the geometric dimensions of the products. Significant progress has been made in the development of interconnection methods in integrated electronic devices, mitigating the complexity of these operations and notable successes towards their full automation. Various processes such as thermocompression bonding, ultrasonic (US) bonding, and thermo-ultrasonic bonding during the assembly of integrated circuits and micromodules are extensively examined. The characteristics of automatic equipment for bonding, along with the peculiarities of the tools employed, are provided for comprehensive understanding. In ultrasonic bonding, mechanical vibrations of ultrasonic frequency are introduced into the contact zone, resulting in the plastic deformation of the wire lead and the removal of oxide films, thereby creating atomically clean juvenile surfaces. This process intensifies the formation of active centers during the bond formation without significant wire deformation or substantial heating. Thermo-ultrasonic bonding involves the combined action of ultrasonic energy, tool loading force, and heating temperature up to 200–220°C. This combination enhances the reproducibility of bond quality and eliminates sensitivity to variations in the properties of the materials being bonded, leading to more consistent and reliable results.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"520 - 552"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 1. Assembly and Mounting of Electronic Devices: Advancements in Technology and Equipment 第 1 章.电子设备的组装和安装:技术和设备的进步
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700017
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 1. Assembly and Mounting of Electronic Devices: Advancements in Technology and Equipment","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700017","DOIUrl":"10.3103/S1068375524700017","url":null,"abstract":"<p>This chapter explores the evolving trends in contemporary electronic module designs and assembly technologies. The enhancement of computer technology and digital communication tools, coupled with the escalation in the operational speed of the elemental base, hinges directly on the reduction of signal transmission length between logical elements, i.e., the constructive delay of the transmitted signal. Interconnection technology, crucial for bridging the microcosm of semiconductor chips with the external world of electronic devices, emerges as pivotal for producing viable products. We provide a comprehensive classification and discussion of assembly connection designs, employing methods involving direct material contact under the influence of pressure, heat, and physical impact in various combinations. Intermediate materials such as solder, microwires, and conductive adhesives are utilized in these processes. Special emphasis is placed on surface mounting of electronic components, COB assembly technology, Flip Chip, BGA, and the assembly of multichip electronic modules.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"269 - 288"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 14. Interblock Mounting of Electronic Equipment 第 14 章电子设备的模块间安装
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700145
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 14. Interblock Mounting of Electronic Equipment","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700145","DOIUrl":"10.3103/S1068375524700145","url":null,"abstract":"<p>The chapter elucidates the assortment of inter-block mounting contact connections and their corresponding implementations: crimping wires with terminals, employing elastic connections facilitated by conductive rubber, and embedding connectors onto flat cables. The integration of multilayer printed circuit boards, configured as junction panels housing robust ground and power circuits made with metal-capacitive layers, has presented considerable challenges for technologists during assembly. The massive ground and power layers act as proficient heat sinks during soldering and reflow processes, leading to the migration of heat towards these layers and consequently causing unsoldered holes. To address this issue, soldered connections have been supplanted by nonsoldered “Press-Fit” types, achieved through the application of special bulging on the contact pin, inducing elastic deformation upon insertion into the metallized hole of the board. This transition necessitates an exploration of various “Press-Fit” connections, the mechanism underlying the establishment of a nonremovable connection between the pin and the metallized hole, as well as the requisite equipment for executing this process.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"567 - 571"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 9. Ultrasonic Soldering and Metallization in Electronics 第 9 章 电子产品中的超声波焊接和金属化电子产品中的超声波焊接和金属化
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700091
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 9. Ultrasonic Soldering and Metallization in Electronics","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700091","DOIUrl":"10.3103/S1068375524700091","url":null,"abstract":"<p>The physical models of primary and secondary ultrasonic effects in liquid media are described, offering a comprehensive understanding of these phenomena. The mechanisms underlying oxide film removal and the enhancement of solder wetting on materials under the action of ultrasonic vibrations are thoroughly explored. In particular, the formation of soldered joints with nonmetallic materials in an ultrasonic field is elucidated, highlighting the activation of diffusion and chemical interaction of solder components with materials. Detailed insights into modern technological equipment and tools utilized in ultrasonic processes are provided, shedding light on their capabilities and functionalities. Furthermore, the impact of ultrasonic process parameters on the properties of contact joints is examined, offering valuable guidance for optimizing process conditions. Ultrasonic technology emerges as an environmentally friendly solution, often referred to as “green” technology, as it obviates the need for fluxes and the subsequent removal process, as well as eliminates the use of lead-containing solders. The widespread adoption of ultrasonic soldering and metallization processes is observed in Western Europe and the United States, underscoring their significance and utility in modern manufacturing practices.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"463 - 491"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 7. Technology for the Assembly and Mounting of Micromodules 第 7 章.微型模块的组装和安装技术
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700078
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 7. Technology for the Assembly and Mounting of Micromodules","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700078","DOIUrl":"10.3103/S1068375524700078","url":null,"abstract":"<p>The operation of mounting chips into packages is the most critical in the technological assembly of electronic products, pivotal for ensuring precise chip positioning, robust mechanical connection, reliable electrical contact, and efficient heat dissipation. Whether accomplished through soldering with eutectic alloys or low-melting-point solders, or via bonding onto a conductive composition, chip mounting must adhere to stringent criteria: high joint strength under thermal cycling and mechanical loads, low electrical and thermal resistance, minimal mechanical stress on the chip, and the absence of contaminants. To elucidate the thermal dynamics and mechanical stress involved, a thermal model of a power transistor with a soldered chip on a chip holder is explored. This model facilitates the determination of thermal resistance and maximum mechanical stress in the chip post-cooling. Automated technological equipment for chip mounting by vibration and ultrasonic soldering is presented, as well as the peculiarities of mounting transistor chips in D-Pak and Super-D2Pak casings, and in power electronics modules. Transitioning towards mounting with rigidly organized leads necessitates the operation of forming a matrix structure of solder leads. This operation is executed through various methods, including induction heating, laser irradiation, and others, to ensure optimal performance and reliability.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"408 - 453"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 10. High-Frequency Soldering Technology in Electronics 第 10 章 电子产品中的高频焊接技术电子产品中的高频焊接技术
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700108
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 10. High-Frequency Soldering Technology in Electronics","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700108","DOIUrl":"10.3103/S1068375524700108","url":null,"abstract":"<p>The issues of selecting the frequency and power of high-frequency heating in soldering electronic modules and device enclosures are thoroughly examined. High-frequency electromagnetic energy is explored for its efficient non-contact heating capabilities, enabling rapid heating to soldering temperatures through the induction of eddy currents in the metal components and solder. Compared to convective heat sources, high-frequency heating can achieve heating rates up to 10 times faster, with the heating zone precisely localized within the area defined by the inductor design. Methods and device schematics for high-frequency soldering processes are provided, alongside descriptions of the technological equipment and fixtures utilized in these processes. Transistor generators operating at medium (66 kHz) and high frequencies (440 and 1760 kHz) have gained widespread adoption for high-frequency heating applications. To enhance the quality of solder joints and increase product yield, computer-controlled thermal profiles are essential for high-frequency soldering processes. The advantages of high-frequency heating, including locality, simplicity of design, high environmental cleanliness, and the ability to leverage electromagnetic forces for improving solder flow, make it an optimal choice for surface mounting of electronic modules. Induction devices constructed on magnetic cores are also viable for soldering power contacts, connectors, and wires to printed circuit boards, coaxial cables, and sealing metal-glass housings of integrated circuits. These applications highlight the versatility and efficacy of high-frequency heating techniques in modern electronic assembly processes.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"492 - 507"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 2. Materials for Building Electrical Connections 第 2 章 建筑电气连接材料建筑电气连接材料
IF 0.9
Surface Engineering and Applied Electrochemistry Pub Date : 2024-09-09 DOI: 10.3103/S1068375524700029
V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"Chapter 2. Materials for Building Electrical Connections","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700029","DOIUrl":"10.3103/S1068375524700029","url":null,"abstract":"<p>In this chapter, we comprehensively discuss the primary varieties of solders and fluxes utilized in the fabrication of electrical connections within electronic modules. Particular emphasis is placed on the challenges associated with the use of lead-free soldering materials. A potential resolution to these challenges involves the modification of solder compositions, potentially transitioning towards nanoscale architectures. A promising avenue of exploration lies in the utilization of water-based fluxes and flux gels. Water-based fluxes containing surfactant additives offer notable advantages, particularly in their application via spray mechanisms. They exhibit robust stability and mitigate thermal shock occurrences during soldering operations. Furthermore, we delve into the characteristics of solder pastes employed in the surface mounting of electronic modules, elucidating their application methodologies, operational considerations, and optimal storage practices. Additionally, we provide a comprehensive overview of conductive adhesives utilized in the formation of contact connections. The chapter also examines the primary types of mounting microwires employed in ultrasonic and thermosonic microwelding processes, alongside outlining the role of protective liquids in the cleaning of connections.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"289 - 316"},"PeriodicalIF":0.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信