{"title":"Andreev reflection in superconducting state of pressurized La3Ni2O7","authors":"Cong Liu, Mengwu Huo, Huan Yang, Qing Li, Yingjie Zhang, Zhening Xiang, Meng Wang, Hai-Hu Wen","doi":"10.1007/s11433-024-2595-2","DOIUrl":"10.1007/s11433-024-2595-2","url":null,"abstract":"<div><p>The discovery of superconductivity with <i>T</i><sub>c</sub> above 77 K in pressurized La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> has stimulated enormous interest in the field of unconventional superconductivity. A recent experiment in La<sub>2</sub>PrNi<sub>2</sub>O<sub>7</sub> has shown that the superconducting volume is close to 100%. Because the superconductivity can only be achieved under high pressures, many intrinsic properties, such as the superconducting gaps, have not been measured yet. We report the Andreev reflection measurement of pressurized La<sub>3</sub>Ni<sub>2</sub>O<sub>7</sub> with the onset superconducting transition temperature at about 77 K. Our data reveal a clear peak of differential conductivity near zero bias in the tunneling spectrum; and appear also are some temperature-dependent steps that may reflect other superconducting gaps. Calculations based on the Blonder-Tinkham-Klapwijk model with multiple components can roughly fit the data, and the central peak can be fitted with a <i>d</i>-wave gap with a magnitude of about 9 meV, and other two <i>s</i>-wave gaps at about 16 and 26 meV. The latter two large gaps are determined from the enhanced steps of the differential conductivity, which may have other origins. Our results reveal possible evidence of a sign-reversal gap and multi-component features of the superconducting gaps in the nickelate 327 systems.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Signatures of non-Euclidean metrics in the optical features of microcavities","authors":"Hans-Jürgen Stöckmann","doi":"10.1007/s11433-024-2585-x","DOIUrl":"10.1007/s11433-024-2585-x","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geyu Mo, Qingqing Wang, Xin Ren, Weitong Yan, Qinxun Li, Yen Chin Ong, Wentao Luo
{"title":"Testing Cotton gravity as dark matter substitute with weak lensing","authors":"Geyu Mo, Qingqing Wang, Xin Ren, Weitong Yan, Qinxun Li, Yen Chin Ong, Wentao Luo","doi":"10.1007/s11433-024-2582-7","DOIUrl":"10.1007/s11433-024-2582-7","url":null,"abstract":"<div><p>Harada proposed a modified theory of gravity called Cotton gravity, and argued that it successfully explains the rotation curves of 84 galaxies without the need for dark matter. In this work, we use the galaxy-galaxy lensing technique to test whether the modification effect of Cotton gravity can indeed be a viable substitute for dark matter. Using the spherically symmetric solution of Cotton gravity, we obtain the deflection angle via the Gauss-Bonnet theorem and the weak lensing shear. We use five galaxy catalogs divided into 5 stellar mass bins from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), each further divided into blue star-forming galaxy and red passive galaxy sub-catalogs. We find that Cotton gravity on its own has a significant deviation from the measured galaxy-galaxy lensing signals, thus it cannot replace the role of dark matter. If we consider the combination of dark matter and Cotton gravity, the modification is tightly constrained. Our analysis also applies to other modified gravity theories whose an additional linear term appears in the Schwarzschild solution.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stable geometries and magnetic properties in transition-metal-doped Sm5Co19 permanent magnet alloys: Insights from DFT","authors":"Cheng Fang, Zhi Yan, Xu-Jin Zhang, Jian-Hua Xiao, Fang Wang, Xiao-Hong Xu","doi":"10.1007/s11433-024-2593-5","DOIUrl":"10.1007/s11433-024-2593-5","url":null,"abstract":"<div><p>Sm<sub>5</sub>Co<sub>19</sub> permanent magnet alloy holds significant potential for applications due to its ultra-high intrinsic coercivity, low temperature coefficient of coercivity and high Curie temperature. However, its metastable nature poses challenges for experimental synthesis. Here we propose to use transition metal doping to effectively improve the structural stability and comprehensive magnetic properties of Sm<sub>5</sub>Co<sub>19</sub> based on first-principles calculations. We find that Sc, Ti, V, Cr, Mn, and Zr preferentially occupy the Sm-6c2 site, while Fe, Ni, Cu, and Zn preferentially occupy the Co-6c2, Co-18h1, Co-18h2, and Co-18h2 site, respectively. Additionally, doping elements at their optimal sites significantly enhance the structural stability of the doped system. Whether substituting Sm or Co sites, doping with Cr, Mn, and Fe significantly increases the total magnetic moment of the Sm<sub>5</sub>Co<sub>19</sub> system. Within the number of doping atoms range from 0 to 12, doping with Cr, Mn, and Fe enhances both the structural stability and the total magnetic moment of the Sm<sub>5</sub>Co<sub>19</sub> system, further confirming the significant impact of atomic site occupation on the performance of the doped system. This study presents a feasible approach for enhancing the structural stability of Sm<sub>5</sub>Co<sub>19</sub> permanent magnets and offers valuable theoretical guidance for the development of high-performance Sm-Co based permanent magnet materials.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyang Qian, Chaoqun Pei, Haibo Ke, Xintao Wei, Dengke Wang, Yandong Jia, Baoan Sun, Gang Wang, Weihua Wang
{"title":"Ultra-stable Co-based metallic glassy microwires for highly sensitive giant-magnetoimpedance sensors","authors":"Yuyang Qian, Chaoqun Pei, Haibo Ke, Xintao Wei, Dengke Wang, Yandong Jia, Baoan Sun, Gang Wang, Weihua Wang","doi":"10.1007/s11433-024-2570-2","DOIUrl":"10.1007/s11433-024-2570-2","url":null,"abstract":"<div><p>The development and deployment of giant magnetoimpedance (GMI) sensors have been significantly hampered by their limited sensitivity to weak magnetic fields and pronounced thermal drift phenomena, both of which are intricately linked to the microstructural properties of the sensor core material, typically composed of metallic glass microwires (MGMWs). Herein, we successfully fabricated an ultra-stable Co-based MGMW with a high GMI effect through a novel multi-step stress-Joule coupled annealing (MS-JCA) technique. The Co-based MGMW showcases a significantly improved GMI effect with an unprecedented impedance change rate of 939%, coupled with an enhanced magnetic field sensitivity of 734%/Oe. In addition, the MS-JCA process ensures the GMI sensor retains exceptional stability during thermal drift measurements over a span of 20 h, characterized by a minimal signal fluctuation ratio of merely 0.59%. Notably, the ultra-stability of the GMI sensor arises from the ultra-stable energy state of the MGMWs following MS-JCA. Our findings offer a compelling strategy for significantly enhancing both the performance and stability of GMI sensors, thereby establishing a solid technical foundation for their broader application in weak magnetic detection.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gate-controlled multistate modulation in few-layer graphene via layer-by-layer ion intercalation","authors":"Siyi Zhou, Shaorui Li, Yongchao Wang, Chenglin Yu, Yayu Wang, Jinsong Zhang","doi":"10.1007/s11433-024-2550-7","DOIUrl":"10.1007/s11433-024-2550-7","url":null,"abstract":"<div><p>The simultaneous modulation of electric and optical properties in graphene is essential for advancing high-performance applications in optoelectronics. However, achieving <i>in-situ</i> control of multiple electric and optical states in graphene devices remains a challenge. Here we demonstrate a versatile and reversible electric-field control of organic-ion intercalation from bilayer to pentalayer graphene. Through simultaneous optical imaging and electric measurements, we reveal multiple physical states controlled by the layer-by-layer intercalation processes, resulting in both high transparency and high electric conductance with an increase in the number of intercalated layers. Raman spectroscopy demonstrates that the intercalated graphene maintains a high carrier concentration without lattice degradation. Moreover, Hall effect measurements reveal that the carrier density can reach approximately 1.5 × 10<sup>14</sup> cm<sup>−2</sup> per layer. The ability to synchronously control the transparency and conductance states by adjusting the number of ion-intercalated layers highlights the potential of multistate modulation for the development of advanced optoelectronic devices in two-dimensional materials.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Sáiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, LHAASO Collaboration
{"title":"LHAASO detection of very-high-energy γ-ray emission surrounding PSR J0248+6021","authors":"Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Sáiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, LHAASO Collaboration","doi":"10.1007/s11433-024-2508-5","DOIUrl":"10.1007/s11433-024-2508-5","url":null,"abstract":"<div><p>We report the detection of an extended very-high-energy (VHE) <i>γ</i>-ray source coincident with the location of middle-aged (62.4 kyr) pulsar PSR J0248+6021, by using the LHAASO-WCDA data of live 796 d and LHAASO-KM2A data of live 1216 d. A significant excess of <i>γ</i>-ray induced showers is observed both by WCDA in energy bands of 1–25 TeV and KM2A in energy bands of >25 TeV with 7.3<i>σ</i> and 13.5<i>σ</i>, respectively. The best-fit position derived through WCDA data is R.A. = 42.06° ± 0.12° and Dec. = 60.24° ± 0.13° with an extension of 0.69°±0.15° and that of the KM2A data is R.A.= 42.29° ± 0.13° and Dec. = 60.38° ± 0.07° with an extension of 0.37° ±0.07°. No clear extended multiwavelength counterpart of this LHAASO source has been found from the radio band to the GeV band. The most plausible explanation of the VHE <i>γ</i>-ray emission is the inverse Compton process of highly relativistic electrons and positrons injected by the pulsar. These electrons/positrons are hypothesized to be either confined within the pulsar wind nebula or to have already escaped into the interstellar medium, forming a pulsar halo.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Sáiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, LHAASO Collaboration
{"title":"Observation of the γ-ray emission from W43 with LHAASO","authors":"Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Sáiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, LHAASO Collaboration","doi":"10.1007/s11433-024-2477-9","DOIUrl":"10.1007/s11433-024-2477-9","url":null,"abstract":"<div><p>In this paper, we report the detection of the very-high-energy (VHE, 100 GeV < <i>E</i> < 100 TeV) and ultra-high-energy (UHE, <i>E</i> > 100 TeV) <i>γ</i>-ray emissions from the direction of the young star-forming region W43, observed by the Large High Altitude Air Shower Observation (LHAASO). The extended <i>γ</i>-ray source was detected with a significance of ∼ 16<i>σ</i> by KM2A and ∼ 17<i>σ</i> by WCDA, respectively. The angular extension of this <i>γ</i>-ray source is about 0.5 degrees, corresponding to a physical size of about 50 pc. We discuss the origin of the <i>γ</i>-ray emission and possible cosmic ray acceleration in the W43 region using multi-wavelength data. Our findings suggest that W43 is likely another young star cluster capable of accelerating cosmic rays (CRs) to at least several hundred TeV.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LHAASO Collaboration, Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Saiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, B. Li
{"title":"Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV","authors":"LHAASO Collaboration, Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Saiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, B. Li","doi":"10.1007/s11433-024-2479-4","DOIUrl":"10.1007/s11433-024-2479-4","url":null,"abstract":"<div><p>The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude <i>b</i> ≈ 10.5°. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21<i>σ</i> and 17<i>σ</i> at 8–100 TeV and >100 TeV, respectively. The corresponding extensions are determined to be 0.23°±0.03° and 0.17°±0.03°. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function <span>(dN/dE=(42.4pm 4.1)({Eover 20 text{TeV}})^{-2.31pm 0.11} text{exp}(-{Eover 110pm 25 text{TeV}}))</span> TeV<sup>−1</sup> cm<sup>−2</sup> s<sup>−1</sup> in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum <span>(dN_{e}/dE_{e} propto ({E_{e} over 100 text{TeV}})^{-3.13pm 0.16} text{exp}[({-E_{e}over373pm 70 text{TeV}})^{2}])</span> at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 µG. To satisfy the multi-wavelength spectrum and the <i>γ</i>-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymer microbottle with flexible tunability for ultrasensitive ultrasound sensing","authors":"Liaosha Kuang, Jialve Sun, Shengnan Huangfu, Tinglan Chen, Zijing Cai, Tian Xu, Xuanyi Zhang, Bo Ni, Fangxing Zhang","doi":"10.1007/s11433-024-2557-6","DOIUrl":"10.1007/s11433-024-2557-6","url":null,"abstract":"<div><p>Optical whispering-gallery-mode microcavities have attracted significant attention for their potential in ultrasensitive ultrasound sensing, despite always relying on expensive tunable lasers in applications. In this study, we integrated an electrothermal tuning function inside the microcavity, enabling fast scanning of modes by applying voltages, which helps provide real-time searching and tracking of the optimal mode. Our device demonstrated a quality factor exceeding 10<sup>6</sup> with a broad tuning range over 33 GHz. This structure achieved high sensitivity in ultrasound detection, with a noise equivalent pressure (NEP) of 3.35 mPa/Hz<sup>1/2</sup> at 20 MHz. We further reported the advantages of the mode thermal broadening effect for ultrasound detection, with successfully obtaining high-contrast photoacoustic images. Our research introduces an innovative approach for cost-effective, high-stability ultrasound detection with microcavity, showing great value for application in photoacoustic imaging.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}