Science China Physics, Mechanics & Astronomy最新文献

筛选
英文 中文
Observation of the γ-ray emission from W43 with LHAASO
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-21 DOI: 10.1007/s11433-024-2477-9
Zhen Cao, F. Aharonian,  Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai,  Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Sáiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, LHAASO Collaboration
{"title":"Observation of the γ-ray emission from W43 with LHAASO","authors":"Zhen Cao,&nbsp;F. Aharonian,&nbsp; Axikegu,&nbsp;Y. X. Bai,&nbsp;Y. W. Bao,&nbsp;D. Bastieri,&nbsp;X. J. Bi,&nbsp;Y. J. Bi,&nbsp;W. Bian,&nbsp;A. V. Bukevich,&nbsp;Q. Cao,&nbsp;W. Y. Cao,&nbsp;Zhe Cao,&nbsp;J. Chang,&nbsp;J. F. Chang,&nbsp;A. M. Chen,&nbsp;E. S. Chen,&nbsp;H. X. Chen,&nbsp;Liang Chen,&nbsp;Lin Chen,&nbsp;Long Chen,&nbsp;M. J. Chen,&nbsp;M. L. Chen,&nbsp;Q. H. Chen,&nbsp;S. Chen,&nbsp;S. H. Chen,&nbsp;S. Z. Chen,&nbsp;T. L. Chen,&nbsp;Y. Chen,&nbsp;N. Cheng,&nbsp;Y. D. Cheng,&nbsp;M. C. Chu,&nbsp;M. Y. Cui,&nbsp;S. W. Cui,&nbsp;X. H. Cui,&nbsp;Y. D. Cui,&nbsp;B. Z. Dai,&nbsp;H. L. Dai,&nbsp;Z. G. Dai,&nbsp; Danzengluobu,&nbsp;X. Q. Dong,&nbsp;K. K. Duan,&nbsp;J. H. Fan,&nbsp;Y. Z. Fan,&nbsp;J. Fang,&nbsp;J. H. Fang,&nbsp;K. Fang,&nbsp;C. F. Feng,&nbsp;H. Feng,&nbsp;L. Feng,&nbsp;S. H. Feng,&nbsp;X. T. Feng,&nbsp;Y. Feng,&nbsp;Y. L. Feng,&nbsp;S. Gabici,&nbsp;B. Gao,&nbsp;C. D. Gao,&nbsp;Q. Gao,&nbsp;W. Gao,&nbsp;W. K. Gao,&nbsp;M. M. Ge,&nbsp;T. T. Ge,&nbsp;L. S. Geng,&nbsp;G. Giacinti,&nbsp;G. H. Gong,&nbsp;Q. B. Gou,&nbsp;M. H. Gu,&nbsp;F. L. Guo,&nbsp;J. Guo,&nbsp;X. L. Guo,&nbsp;Y. Q. Guo,&nbsp;Y. Y. Guo,&nbsp;Y. A. Han,&nbsp;O. A. Hannuksela,&nbsp;M. Hasan,&nbsp;H. H. He,&nbsp;H. N. He,&nbsp;J. Y. He,&nbsp;Y. He,&nbsp;Y. K. Hor,&nbsp;B. W. Hou,&nbsp;C. Hou,&nbsp;X. Hou,&nbsp;H. B. Hu,&nbsp;Q. Hu,&nbsp;S. C. Hu,&nbsp;C. Huang,&nbsp;D. H. Huang,&nbsp;T. Q. Huang,&nbsp;W. J. Huang,&nbsp;X. T. Huang,&nbsp;X. Y. Huang,&nbsp;Y. Huang,&nbsp;Y. Y. Huang,&nbsp;X. L. Ji,&nbsp;H. Y. Jia,&nbsp;K. Jia,&nbsp;H. B. Jiang,&nbsp;K. Jiang,&nbsp;X. W. Jiang,&nbsp;Z. J. Jiang,&nbsp;M. Jin,&nbsp;M. M. Kang,&nbsp;I. Karpikov,&nbsp;D. Khangulyan,&nbsp;D. Kuleshov,&nbsp;K. Kurinov,&nbsp;B. B. Li,&nbsp;C. M. Li,&nbsp;Cheng Li,&nbsp;Cong Li,&nbsp;D. Li,&nbsp;F. Li,&nbsp;H. B. Li,&nbsp;H. C. Li,&nbsp;Jian Li,&nbsp;Jie Li,&nbsp;K. Li,&nbsp;S. D. Li,&nbsp;W. L. Li,&nbsp;W. L. Li,&nbsp;X. R. Li,&nbsp;Xin Li,&nbsp;Y. Z. Li,&nbsp;Zhe Li,&nbsp;Zhuo Li,&nbsp;E. W. Liang,&nbsp;Y. F. Liang,&nbsp;S. J. Lin,&nbsp;B. Liu,&nbsp;C. Liu,&nbsp;D. Liu,&nbsp;D. B. Liu,&nbsp;H. Liu,&nbsp;H. D. Liu,&nbsp;J. Liu,&nbsp;J. L. Liu,&nbsp;M. Y. Liu,&nbsp;R. Y. Liu,&nbsp;S. M. Liu,&nbsp;W. Liu,&nbsp;Y. Liu,&nbsp;Y. N. Liu,&nbsp;Q. Luo,&nbsp;Y. Luo,&nbsp;H. K. Lv,&nbsp;B. Q. Ma,&nbsp;L. L. Ma,&nbsp;X. H. Ma,&nbsp;J. R. Mao,&nbsp;Z. Min,&nbsp;W. Mitthumsiri,&nbsp;H. J. Mu,&nbsp;Y. C. Nan,&nbsp;A. Neronov,&nbsp;K. C. Y. Ng,&nbsp;L. J. Ou,&nbsp;P. Pattarakijwanich,&nbsp;Z. Y. Pei,&nbsp;J. C. Qi,&nbsp;M. Y. Qi,&nbsp;B. Q. Qiao,&nbsp;J. J. Qin,&nbsp;A. Raza,&nbsp;D. Ruffolo,&nbsp;A. Sáiz,&nbsp;M. Saeed,&nbsp;D. Semikoz,&nbsp;L. Shao,&nbsp;O. Shchegolev,&nbsp;X. D. Sheng,&nbsp;F. W. Shu,&nbsp;H. C. Song,&nbsp;Yu. V. Stenkin,&nbsp;V. Stepanov,&nbsp;Y. Su,&nbsp;D. X. Sun,&nbsp;Q. N. Sun,&nbsp;X. N. Sun,&nbsp;Z. B. Sun,&nbsp;J. Takata,&nbsp;P. H. T. Tam,&nbsp;Q. W. Tang,&nbsp;R. Tang,&nbsp;Z. B. Tang,&nbsp;W. W. Tian,&nbsp;L. H. Wan,&nbsp;C. Wang,&nbsp;C. B. Wang,&nbsp;G. W. Wang,&nbsp;H. G. Wang,&nbsp;H. H. Wang,&nbsp;J. C. Wang,&nbsp;Kai Wang,&nbsp;Kai Wang,&nbsp;L. P. Wang,&nbsp;L. Y. Wang,&nbsp;P. H. Wang,&nbsp;R. Wang,&nbsp;W. Wang,&nbsp;X. G. Wang,&nbsp;X. Y. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. J. Wang,&nbsp;Z. H. Wang,&nbsp;Z. X. Wang,&nbsp;Zhen Wang,&nbsp;Zheng Wang,&nbsp;D. M. Wei,&nbsp;J. J. Wei,&nbsp;Y. J. Wei,&nbsp;T. Wen,&nbsp;C. Y. Wu,&nbsp;H. R. Wu,&nbsp;Q. W. Wu,&nbsp;S. Wu,&nbsp;X. F. Wu,&nbsp;Y. S. Wu,&nbsp;S. Q. Xi,&nbsp;J. Xia,&nbsp;G. M. Xiang,&nbsp;D. X. Xiao,&nbsp;G. Xiao,&nbsp;Y. L. Xin,&nbsp;Y. Xing,&nbsp;D. R. Xiong,&nbsp;Z. Xiong,&nbsp;D. L. Xu,&nbsp;R. F. Xu,&nbsp;R. X. Xu,&nbsp;W. L. Xu,&nbsp;L. Xue,&nbsp;D. H. Yan,&nbsp;J. Z. Yan,&nbsp;T. Yan,&nbsp;C. W. Yang,&nbsp;C. Y. Yang,&nbsp;F. Yang,&nbsp;F. F. Yang,&nbsp;L. L. Yang,&nbsp;M. J. Yang,&nbsp;R. Z. Yang,&nbsp;W. X. Yang,&nbsp;Y. H. Yao,&nbsp;Z. G. Yao,&nbsp;L. Q. Yin,&nbsp;N. Yin,&nbsp;X. H. You,&nbsp;Z. Y. You,&nbsp;Y. H. Yu,&nbsp;Q. Yuan,&nbsp;H. Yue,&nbsp;H. D. Zeng,&nbsp;T. X. Zeng,&nbsp;W. Zeng,&nbsp;M. Zha,&nbsp;B. B. Zhang,&nbsp;F. Zhang,&nbsp;H. Zhang,&nbsp;H. M. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. L. Zhang,&nbsp;Li Zhang,&nbsp;P. F. Zhang,&nbsp;P. P. Zhang,&nbsp;R. Zhang,&nbsp;S. B. Zhang,&nbsp;S. R. Zhang,&nbsp;S. S. Zhang,&nbsp;X. Zhang,&nbsp;X. P. Zhang,&nbsp;Y. F. Zhang,&nbsp;Yi Zhang,&nbsp;Yong Zhang,&nbsp;B. Zhao,&nbsp;J. Zhao,&nbsp;L. Zhao,&nbsp;L. Z. Zhao,&nbsp;S. P. Zhao,&nbsp;X. H. Zhao,&nbsp;F. Zheng,&nbsp;W. J. Zhong,&nbsp;B. Zhou,&nbsp;H. Zhou,&nbsp;J. N. Zhou,&nbsp;M. Zhou,&nbsp;P. Zhou,&nbsp;R. Zhou,&nbsp;X. X. Zhou,&nbsp;X. X. Zhou,&nbsp;B. Y. Zhu,&nbsp;C. G. Zhu,&nbsp;F. R. Zhu,&nbsp;H. Zhu,&nbsp;K. J. Zhu,&nbsp;Y. C. Zou,&nbsp;X. Zuo,&nbsp;LHAASO Collaboration","doi":"10.1007/s11433-024-2477-9","DOIUrl":"10.1007/s11433-024-2477-9","url":null,"abstract":"<div><p>In this paper, we report the detection of the very-high-energy (VHE, 100 GeV &lt; <i>E</i> &lt; 100 TeV) and ultra-high-energy (UHE, <i>E</i> &gt; 100 TeV) <i>γ</i>-ray emissions from the direction of the young star-forming region W43, observed by the Large High Altitude Air Shower Observation (LHAASO). The extended <i>γ</i>-ray source was detected with a significance of ∼ 16<i>σ</i> by KM2A and ∼ 17<i>σ</i> by WCDA, respectively. The angular extension of this <i>γ</i>-ray source is about 0.5 degrees, corresponding to a physical size of about 50 pc. We discuss the origin of the <i>γ</i>-ray emission and possible cosmic ray acceleration in the W43 region using multi-wavelength data. Our findings suggest that W43 is likely another young star cluster capable of accelerating cosmic rays (CRs) to at least several hundred TeV.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV 300 TeV γ射线中CTA1与LHAASO复合信噪比的深入研究
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-17 DOI: 10.1007/s11433-024-2479-4
LHAASO Collaboration, Zhen Cao, F. Aharonian,  Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai,  Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Saiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, B. Li
{"title":"Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV","authors":"LHAASO Collaboration,&nbsp;Zhen Cao,&nbsp;F. Aharonian,&nbsp; Axikegu,&nbsp;Y. X. Bai,&nbsp;Y. W. Bao,&nbsp;D. Bastieri,&nbsp;X. J. Bi,&nbsp;Y. J. Bi,&nbsp;W. Bian,&nbsp;A. V. Bukevich,&nbsp;Q. Cao,&nbsp;W. Y. Cao,&nbsp;Zhe Cao,&nbsp;J. Chang,&nbsp;J. F. Chang,&nbsp;A. M. Chen,&nbsp;E. S. Chen,&nbsp;H. X. Chen,&nbsp;Liang Chen,&nbsp;Lin Chen,&nbsp;Long Chen,&nbsp;M. J. Chen,&nbsp;M. L. Chen,&nbsp;Q. H. Chen,&nbsp;S. Chen,&nbsp;S. H. Chen,&nbsp;S. Z. Chen,&nbsp;T. L. Chen,&nbsp;Y. Chen,&nbsp;N. Cheng,&nbsp;Y. D. Cheng,&nbsp;M. C. Chu,&nbsp;M. Y. Cui,&nbsp;S. W. Cui,&nbsp;X. H. Cui,&nbsp;Y. D. Cui,&nbsp;B. Z. Dai,&nbsp;H. L. Dai,&nbsp;Z. G. Dai,&nbsp; Danzengluobu,&nbsp;X. Q. Dong,&nbsp;K. K. Duan,&nbsp;J. H. Fan,&nbsp;Y. Z. Fan,&nbsp;J. Fang,&nbsp;J. H. Fang,&nbsp;K. Fang,&nbsp;C. F. Feng,&nbsp;H. Feng,&nbsp;L. Feng,&nbsp;S. H. Feng,&nbsp;X. T. Feng,&nbsp;Y. Feng,&nbsp;Y. L. Feng,&nbsp;S. Gabici,&nbsp;B. Gao,&nbsp;C. D. Gao,&nbsp;Q. Gao,&nbsp;W. Gao,&nbsp;W. K. Gao,&nbsp;M. M. Ge,&nbsp;T. T. Ge,&nbsp;L. S. Geng,&nbsp;G. Giacinti,&nbsp;G. H. Gong,&nbsp;Q. B. Gou,&nbsp;M. H. Gu,&nbsp;F. L. Guo,&nbsp;J. Guo,&nbsp;X. L. Guo,&nbsp;Y. Q. Guo,&nbsp;Y. Y. Guo,&nbsp;Y. A. Han,&nbsp;O. A. Hannuksela,&nbsp;M. Hasan,&nbsp;H. H. He,&nbsp;H. N. He,&nbsp;J. Y. He,&nbsp;Y. He,&nbsp;Y. K. Hor,&nbsp;B. W. Hou,&nbsp;C. Hou,&nbsp;X. Hou,&nbsp;H. B. Hu,&nbsp;Q. Hu,&nbsp;S. C. Hu,&nbsp;C. Huang,&nbsp;D. H. Huang,&nbsp;T. Q. Huang,&nbsp;W. J. Huang,&nbsp;X. T. Huang,&nbsp;X. Y. Huang,&nbsp;Y. Huang,&nbsp;Y. Y. Huang,&nbsp;X. L. Ji,&nbsp;H. Y. Jia,&nbsp;K. Jia,&nbsp;H. B. Jiang,&nbsp;K. Jiang,&nbsp;X. W. Jiang,&nbsp;Z. J. Jiang,&nbsp;M. Jin,&nbsp;M. M. Kang,&nbsp;I. Karpikov,&nbsp;D. Khangulyan,&nbsp;D. Kuleshov,&nbsp;K. Kurinov,&nbsp;B. B. Li,&nbsp;C. M. Li,&nbsp;Cheng Li,&nbsp;Cong Li,&nbsp;D. Li,&nbsp;F. Li,&nbsp;H. B. Li,&nbsp;H. C. Li,&nbsp;Jian Li,&nbsp;Jie Li,&nbsp;K. Li,&nbsp;S. D. Li,&nbsp;W. L. Li,&nbsp;W. L. Li,&nbsp;X. R. Li,&nbsp;Xin Li,&nbsp;Y. Z. Li,&nbsp;Zhe Li,&nbsp;Zhuo Li,&nbsp;E. W. Liang,&nbsp;Y. F. Liang,&nbsp;S. J. Lin,&nbsp;B. Liu,&nbsp;C. Liu,&nbsp;D. Liu,&nbsp;D. B. Liu,&nbsp;H. Liu,&nbsp;H. D. Liu,&nbsp;J. Liu,&nbsp;J. L. Liu,&nbsp;M. Y. Liu,&nbsp;R. Y. Liu,&nbsp;S. M. Liu,&nbsp;W. Liu,&nbsp;Y. Liu,&nbsp;Y. N. Liu,&nbsp;Q. Luo,&nbsp;Y. Luo,&nbsp;H. K. Lv,&nbsp;B. Q. Ma,&nbsp;L. L. Ma,&nbsp;X. H. Ma,&nbsp;J. R. Mao,&nbsp;Z. Min,&nbsp;W. Mitthumsiri,&nbsp;H. J. Mu,&nbsp;Y. C. Nan,&nbsp;A. Neronov,&nbsp;K. C. Y. Ng,&nbsp;L. J. Ou,&nbsp;P. Pattarakijwanich,&nbsp;Z. Y. Pei,&nbsp;J. C. Qi,&nbsp;M. Y. Qi,&nbsp;B. Q. Qiao,&nbsp;J. J. Qin,&nbsp;A. Raza,&nbsp;D. Ruffolo,&nbsp;A. Saiz,&nbsp;M. Saeed,&nbsp;D. Semikoz,&nbsp;L. Shao,&nbsp;O. Shchegolev,&nbsp;X. D. Sheng,&nbsp;F. W. Shu,&nbsp;H. C. Song,&nbsp;Yu. V. Stenkin,&nbsp;V. Stepanov,&nbsp;Y. Su,&nbsp;D. X. Sun,&nbsp;Q. N. Sun,&nbsp;X. N. Sun,&nbsp;Z. B. Sun,&nbsp;J. Takata,&nbsp;P. H. T. Tam,&nbsp;Q. W. Tang,&nbsp;R. Tang,&nbsp;Z. B. Tang,&nbsp;W. W. Tian,&nbsp;L. H. Wan,&nbsp;C. Wang,&nbsp;C. B. Wang,&nbsp;G. W. Wang,&nbsp;H. G. Wang,&nbsp;H. H. Wang,&nbsp;J. C. Wang,&nbsp;Kai Wang,&nbsp;Kai Wang,&nbsp;L. P. Wang,&nbsp;L. Y. Wang,&nbsp;P. H. Wang,&nbsp;R. Wang,&nbsp;W. Wang,&nbsp;X. G. Wang,&nbsp;X. Y. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. J. Wang,&nbsp;Z. H. Wang,&nbsp;Z. X. Wang,&nbsp;Zhen Wang,&nbsp;Zheng Wang,&nbsp;D. M. Wei,&nbsp;J. J. Wei,&nbsp;Y. J. Wei,&nbsp;T. Wen,&nbsp;C. Y. Wu,&nbsp;H. R. Wu,&nbsp;Q. W. Wu,&nbsp;S. Wu,&nbsp;X. F. Wu,&nbsp;Y. S. Wu,&nbsp;S. Q. Xi,&nbsp;J. Xia,&nbsp;G. M. Xiang,&nbsp;D. X. Xiao,&nbsp;G. Xiao,&nbsp;Y. L. Xin,&nbsp;Y. Xing,&nbsp;D. R. Xiong,&nbsp;Z. Xiong,&nbsp;D. L. Xu,&nbsp;R. F. Xu,&nbsp;R. X. Xu,&nbsp;W. L. Xu,&nbsp;L. Xue,&nbsp;D. H. Yan,&nbsp;J. Z. Yan,&nbsp;T. Yan,&nbsp;C. W. Yang,&nbsp;C. Y. Yang,&nbsp;F. Yang,&nbsp;F. F. Yang,&nbsp;L. L. Yang,&nbsp;M. J. Yang,&nbsp;R. Z. Yang,&nbsp;W. X. Yang,&nbsp;Y. H. Yao,&nbsp;Z. G. Yao,&nbsp;L. Q. Yin,&nbsp;N. Yin,&nbsp;X. H. You,&nbsp;Z. Y. You,&nbsp;Y. H. Yu,&nbsp;Q. Yuan,&nbsp;H. Yue,&nbsp;H. D. Zeng,&nbsp;T. X. Zeng,&nbsp;W. Zeng,&nbsp;M. Zha,&nbsp;B. B. Zhang,&nbsp;F. Zhang,&nbsp;H. Zhang,&nbsp;H. M. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. L. Zhang,&nbsp;Li Zhang,&nbsp;P. F. Zhang,&nbsp;P. P. Zhang,&nbsp;R. Zhang,&nbsp;S. B. Zhang,&nbsp;S. R. Zhang,&nbsp;S. S. Zhang,&nbsp;X. Zhang,&nbsp;X. P. Zhang,&nbsp;Y. F. Zhang,&nbsp;Yi Zhang,&nbsp;Yong Zhang,&nbsp;B. Zhao,&nbsp;J. Zhao,&nbsp;L. Zhao,&nbsp;L. Z. Zhao,&nbsp;S. P. Zhao,&nbsp;X. H. Zhao,&nbsp;F. Zheng,&nbsp;W. J. Zhong,&nbsp;B. Zhou,&nbsp;H. Zhou,&nbsp;J. N. Zhou,&nbsp;M. Zhou,&nbsp;P. Zhou,&nbsp;R. Zhou,&nbsp;X. X. Zhou,&nbsp;X. X. Zhou,&nbsp;B. Y. Zhu,&nbsp;C. G. Zhu,&nbsp;F. R. Zhu,&nbsp;H. Zhu,&nbsp;K. J. Zhu,&nbsp;Y. C. Zou,&nbsp;X. Zuo,&nbsp;B. Li","doi":"10.1007/s11433-024-2479-4","DOIUrl":"10.1007/s11433-024-2479-4","url":null,"abstract":"<div><p>The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude <i>b</i> ≈ 10.5°. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21<i>σ</i> and 17<i>σ</i> at 8–100 TeV and &gt;100 TeV, respectively. The corresponding extensions are determined to be 0.23°±0.03° and 0.17°±0.03°. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function <span>(dN/dE=(42.4pm 4.1)({Eover 20 text{TeV}})^{-2.31pm 0.11} text{exp}(-{Eover 110pm 25 text{TeV}}))</span> TeV<sup>−1</sup> cm<sup>−2</sup> s<sup>−1</sup> in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum <span>(dN_{e}/dE_{e} propto ({E_{e} over 100 text{TeV}})^{-3.13pm 0.16} text{exp}[({-E_{e}over373pm 70 text{TeV}})^{2}])</span> at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 µG. To satisfy the multi-wavelength spectrum and the <i>γ</i>-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer microbottle with flexible tunability for ultrasensitive ultrasound sensing 用于超灵敏超声传感的柔性可调聚合物微瓶
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-16 DOI: 10.1007/s11433-024-2557-6
Liaosha Kuang, Jialve Sun, Shengnan Huangfu, Tinglan Chen, Zijing Cai, Tian Xu, Xuanyi Zhang, Bo Ni, Fangxing Zhang
{"title":"Polymer microbottle with flexible tunability for ultrasensitive ultrasound sensing","authors":"Liaosha Kuang,&nbsp;Jialve Sun,&nbsp;Shengnan Huangfu,&nbsp;Tinglan Chen,&nbsp;Zijing Cai,&nbsp;Tian Xu,&nbsp;Xuanyi Zhang,&nbsp;Bo Ni,&nbsp;Fangxing Zhang","doi":"10.1007/s11433-024-2557-6","DOIUrl":"10.1007/s11433-024-2557-6","url":null,"abstract":"<div><p>Optical whispering-gallery-mode microcavities have attracted significant attention for their potential in ultrasensitive ultrasound sensing, despite always relying on expensive tunable lasers in applications. In this study, we integrated an electrothermal tuning function inside the microcavity, enabling fast scanning of modes by applying voltages, which helps provide real-time searching and tracking of the optimal mode. Our device demonstrated a quality factor exceeding 10<sup>6</sup> with a broad tuning range over 33 GHz. This structure achieved high sensitivity in ultrasound detection, with a noise equivalent pressure (NEP) of 3.35 mPa/Hz<sup>1/2</sup> at 20 MHz. We further reported the advantages of the mode thermal broadening effect for ultrasound detection, with successfully obtaining high-contrast photoacoustic images. Our research introduces an innovative approach for cost-effective, high-stability ultrasound detection with microcavity, showing great value for application in photoacoustic imaging.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New breakthrough: Building non-markovian environments for single-qubit systems at any time interval 新突破:为任意时间间隔的单量子位系统构建非马尔可夫环境
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-16 DOI: 10.1007/s11433-024-2568-0
H. Z. Shen
{"title":"New breakthrough: Building non-markovian environments for single-qubit systems at any time interval","authors":"H. Z. Shen","doi":"10.1007/s11433-024-2568-0","DOIUrl":"10.1007/s11433-024-2568-0","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic transport properties and topological Hall effect in the annealed kagome antiferromagnet FeGe 退火kagome反铁磁体FeGe的各向异性输运特性和拓扑霍尔效应
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-16 DOI: 10.1007/s11433-024-2553-3
Jiajun Ma, Chenfei Shi, Yantao Cao, Yuwei Zhang, Yazhou Li, Jiaxing Liao, Jialu Wang, Wenhe Jiao, Hanjie Guo, Chenchao Xu, Shixun Cao, Jianhui Dai, Jin-Ke Bao, Yuke Li
{"title":"Anisotropic transport properties and topological Hall effect in the annealed kagome antiferromagnet FeGe","authors":"Jiajun Ma,&nbsp;Chenfei Shi,&nbsp;Yantao Cao,&nbsp;Yuwei Zhang,&nbsp;Yazhou Li,&nbsp;Jiaxing Liao,&nbsp;Jialu Wang,&nbsp;Wenhe Jiao,&nbsp;Hanjie Guo,&nbsp;Chenchao Xu,&nbsp;Shixun Cao,&nbsp;Jianhui Dai,&nbsp;Jin-Ke Bao,&nbsp;Yuke Li","doi":"10.1007/s11433-024-2553-3","DOIUrl":"10.1007/s11433-024-2553-3","url":null,"abstract":"<div><p>Electron correlation often gives birth to various orders in quantum materials. Recently, a strongly correlated kagome antiferromagnet FeGe is discovered to undergo a charge density wave transition inside the A-type antiferromagnetic state, providing an opportunity to explore the interplay between charge order and magnetism. Here, we reported the observation of anisotropic resistivity and Hall effect, along with a topological Hall effect, in the annealed FeGe crystals. As the current flows along the <i>ab</i>-plane, the temperature dependence of <i>ρ</i><sub><i>ab</i></sub> exhibits a distinct resistivity loop related to a first-order transition at <i>T</i><sub><i>cdw</i></sub>. The applied magnetic fields do not alter <i>T</i><sub><i>cdw</i></sub> but can induce a spin-flop transition at <i>H</i><sub><i>sf</i></sub>. Consequently, a field-induced large topological Hall effect is observed in the canting antiferromagnetic (CAFM) state below <i>T</i><sub><i>cant</i></sub>, which is possibly attributed to the non-trivial spin texture during the spin-flop process. Whereas, as current is parallel to <i>c</i>-axis, both the field-induced transitions in <i>ρ</i><sub><i>c</i></sub> and <i>χ</i><sub><i>c</i></sub> disappear. Instead, the Hall resistivity in the annealed FeGe significantly exhibits a deviation from the linear field-dependent. These findings provide valuable insight into revealing the interplay among magnetism, charge order and topology in the kagome magnets.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring non-Hermitian dynamics in a superconducting quantum circuit via dissipation-free approach 利用无耗散方法探索超导量子电路中的非厄米动力学
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-15 DOI: 10.1007/s11433-024-2554-0
Yang Yu
{"title":"Exploring non-Hermitian dynamics in a superconducting quantum circuit via dissipation-free approach","authors":"Yang Yu","doi":"10.1007/s11433-024-2554-0","DOIUrl":"10.1007/s11433-024-2554-0","url":null,"abstract":"","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable non-Markovian and quantum coherence in the single-qubit dephasing noise channel 单量子位去相噪声信道中的可调谐非马尔可夫相干和量子相干
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-15 DOI: 10.1007/s11433-024-2565-2
Na-Na Zhang, Chao-Yi Wu, Xu Zhou, Qi-Yuan Liu, Cheng-Ge Liu, Yong-Rui Guo, Ren-Pu Li
{"title":"Tunable non-Markovian and quantum coherence in the single-qubit dephasing noise channel","authors":"Na-Na Zhang,&nbsp;Chao-Yi Wu,&nbsp;Xu Zhou,&nbsp;Qi-Yuan Liu,&nbsp;Cheng-Ge Liu,&nbsp;Yong-Rui Guo,&nbsp;Ren-Pu Li","doi":"10.1007/s11433-024-2565-2","DOIUrl":"10.1007/s11433-024-2565-2","url":null,"abstract":"<div><p>In this paper, we construct a single-qubit dephasing noise channel based on the nuclear magnetic resonance (NMR) system by employing the bath-engineering technology, and achieve the construction of the tunable non-Markovian environment in the dephasing noise channel. Our findings indicate that for the single-qubit system, the transition of system dynamics from Markovian to non-Markovian can be achieved by adjusting the base frequency of the noise power spectrum. However, the base frequency corresponding to this phase transition point is not fixed, and there is a certain relationship between it and the total evolution time of the single-qubit system. Through our research, we discovered a fundamental relationship: if the single-qubit system dynamics undergoe a transition from Markovian to non-Markovian at <i>ω</i><sub>0</sub> within 0–2<i>t</i> ms, shortening the evolution time to 0-<i>t</i> ms results in an increase of the phase transition point to 2<i>ω</i><sub>0</sub>. This insight offers crucial guidance for artificially crafting non-Markovian environments across arbitrary time scales in single-qubit systems, and it is not limited by the type of noise. Apart from system dynamics, quantum coherence is also a focal point of our research. We find that when the system dynamics exhibit non-Markovian behavior, the quantum coherence of the single-qubit system experiences revivals. Notably, the timing of these coherence revivals aligns with the instants of the non-Markovianity enhancement. Therefore, our research also serves as a pivotal foundation for the artificial manipulation and realization of quantum coherence revivals within diverse single-qubit systems.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous open orbits in Hofstadter spectrum of Chern insulator 陈氏绝缘子霍夫施塔特谱中的异常开轨道
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-14 DOI: 10.1007/s11433-024-2564-8
Haijiao Ji, Peng Zhou, Noah F. Q. Yuan, Hua Jiang, Haiwen Liu, X. C. Xie
{"title":"Anomalous open orbits in Hofstadter spectrum of Chern insulator","authors":"Haijiao Ji,&nbsp;Peng Zhou,&nbsp;Noah F. Q. Yuan,&nbsp;Hua Jiang,&nbsp;Haiwen Liu,&nbsp;X. C. Xie","doi":"10.1007/s11433-024-2564-8","DOIUrl":"10.1007/s11433-024-2564-8","url":null,"abstract":"<div><p>The nontrivial band topology of Chern insulator can enrich the content of its Hofstadter butterfly spectra, which is closely related to recent experiments in twisted bilayer graphene and cold atom systems. We investigate the Hofstadter spectrum for various models of Chern insulators under a rational flux <span>({phi_{0}}over{q})</span>, here <span>(phi_{0}={hover{e}})</span> and <i>q</i> being an integer. We find the number of splitting subbands is ∣<i>q</i> − <i>C</i>∣ with <i>C</i> denoting the Chern number of parent band. Importantly, anomalous open-orbital subbands with Chern numbers <i>q</i> − 1 and −<i>q</i> − 1 emerge unexpectedly, which are beyond the parameter window (−<i>q</i>/2, <i>q</i>/2) of the Diophantine equation studied by Thouless-Kohmoto-Nightingale-den Nijs [Phys. Rev. Lett. <b>49</b>, 405 (1982)]. The emergence of anomalous open orbits can be traced by analyzing the evolution of the Hofstadter spectrum, identifying as a new type of topological phase transition. These novel findings not only pinpoint the peculiar Hofstadter spectrum of Chern insulator, but also provide routes to study exotic characteristics beyond the Landau level physics.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissipation-free approach for realizing non-Hermitian dynamics in a superconducting circuit 实现超导电路非厄米动力学的无耗散方法
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-13 DOI: 10.1007/s11433-024-2549-0
Yi-Hao Kang, Yang Xiao, Yu Wang, Qi-Ping Su, Chui-Ping Yang
{"title":"Dissipation-free approach for realizing non-Hermitian dynamics in a superconducting circuit","authors":"Yi-Hao Kang,&nbsp;Yang Xiao,&nbsp;Yu Wang,&nbsp;Qi-Ping Su,&nbsp;Chui-Ping Yang","doi":"10.1007/s11433-024-2549-0","DOIUrl":"10.1007/s11433-024-2549-0","url":null,"abstract":"<div><p>Non-Hermitian dynamics exhibits a wealth of surprising and potentially useful phenomena. However, it is typically realized by coupling a system with thermal reservoirs, which makes the system suffer from thermal fluctuations associated with the dissipation. Here, we propose a dissipation-free approach to realize non-Hermitian dynamics using a superconducting circuit composed of two resonators and a superconducting qutrit. The non-Hermiticity arises in the dynamical matrix for the evolution of the two resonators in the Heisenberg picture, via a photon-number non-conserved dynamics. The energy spectrum of the non-Hermitian dynamical matrix can be retrieved by measuring the state of the two resonators, and a phase transition of the energy spectrum can be observed by varying the control parameters. In the realization of the non-Hermitian dynamics, the dissipation of the system and the post-selection are not required. Thus, the approach is implemented in a deterministic way, and the reservoir-induced noise is suppressed. Numerical simulations indicate that the energy spectrum of the non-Hermitian dynamical matrix obtained via the measurement of the resonators is in accordance with the theoretical prediction. Moreover, we demonstrate the parity discrimination for the state of two four-level qudits as an application, exhibiting the potential of the non-Hermitian dynamics in the field of quantum measurement. This work opens a new avenue for the realization of non-Hermitian dynamics and may have a significant implication in exploring the non-Hermitian phenomena.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the p-Ω interactions and correlation functions 研究p-Ω相互作用和相关函数
IF 6.4 1区 物理与天体物理
Science China Physics, Mechanics & Astronomy Pub Date : 2025-01-10 DOI: 10.1007/s11433-024-2580-9
Ye Yan, Qi Huang, Youchang Yang, Hongxia Huang, Jialun Ping
{"title":"Investigating the p-Ω interactions and correlation functions","authors":"Ye Yan,&nbsp;Qi Huang,&nbsp;Youchang Yang,&nbsp;Hongxia Huang,&nbsp;Jialun Ping","doi":"10.1007/s11433-024-2580-9","DOIUrl":"10.1007/s11433-024-2580-9","url":null,"abstract":"<div><p>Motivated by experimental measurements, we investigate the <i>p</i>-Ω correlation functions and interactions on the basis of a quark model. By solving the inverse scattering problem with channel coupling, we renormalize the coupling to other channels into an effective single-channel <i>p</i>-Ω potentials. The effects of Coulomb interaction and spin-averaging are also discussed. According to our results, the depletion of the <i>p</i>-Ω correlation functions, which is attributed to the <i>J</i><sup><i>P</i></sup> = 2<sup>+</sup> bound state not observed in the ALICE Collaboration’s measurements (Nature <b>588</b>, 232 (2020)), can be explained by the contribution of the attractive <i>J</i><sup><i>P</i></sup> = 1<sup>+</sup> component in spin-averaging. So far, we have provided a consistent description of the <i>p</i>-Ω system from the perspective of the quark model, including the energy spectrum, scattering phase shifts, and correlation functions. The existence of the <i>p</i>-Ω bound state has been supported by all three aspects. Additionally, a sign of the <i>p</i>-Ω correlation function’s subtle sub-unity part can be seen in experimental measurements, which warrants more precise verification in the future.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 3","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信