{"title":"快速膨胀等离子体驱动快速磁重联的数值实验","authors":"Shanshan Xu, Jun Lin, Zhixing Mei","doi":"10.1007/s11433-025-2688-0","DOIUrl":null,"url":null,"abstract":"<div><p>Three modes of magnetic reconnection, flux pile-up, Sonnerup, and hybrid, are examined in the context of driven magnetic reconnection via 2D and 2.5D magnetohydrodynamic (MHD) numerical simulations. They result from variances in gas pressure and magnetic field strength in the reconnection inflow region. The simulation demonstrates that the Spitzer diffusion region of magnetic reconnection is not just an X-point; instead, it appears as a slim and elongated current sheet that creates two pairs of the slow-mode shock (SS) on either end. These shocks contribute to forming four boundaries that separate the inflow from the outflow. In the regions far from the Spitzer diffusion region, two sets of rotational discontinuity (RD) stand inside the SSs and form the combination of SS and RD structures. The RDs reverse the magnetic field inside the reconnection outflow region, and create a W-shaped magnetic field in that region. The scenario that the rotation of the magnetic field is not caused by an intermediate wave, and the SS is located outside the RD, is consistent with the inference of Priest (Mon. Not. R. Astron. Soc. <b>159</b>, 389 (1972)), and is contrary to that of Petschek and Thorne (Astrophys. J. <b>147</b>, 1157 (1967)) and Vasyliunas (Rev. Geophys. Space Phys. <b>13</b>, 303 (1975)).</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 9","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical experiments of fast magnetic reconnection driven by the rapidly expanding plasma\",\"authors\":\"Shanshan Xu, Jun Lin, Zhixing Mei\",\"doi\":\"10.1007/s11433-025-2688-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three modes of magnetic reconnection, flux pile-up, Sonnerup, and hybrid, are examined in the context of driven magnetic reconnection via 2D and 2.5D magnetohydrodynamic (MHD) numerical simulations. They result from variances in gas pressure and magnetic field strength in the reconnection inflow region. The simulation demonstrates that the Spitzer diffusion region of magnetic reconnection is not just an X-point; instead, it appears as a slim and elongated current sheet that creates two pairs of the slow-mode shock (SS) on either end. These shocks contribute to forming four boundaries that separate the inflow from the outflow. In the regions far from the Spitzer diffusion region, two sets of rotational discontinuity (RD) stand inside the SSs and form the combination of SS and RD structures. The RDs reverse the magnetic field inside the reconnection outflow region, and create a W-shaped magnetic field in that region. The scenario that the rotation of the magnetic field is not caused by an intermediate wave, and the SS is located outside the RD, is consistent with the inference of Priest (Mon. Not. R. Astron. Soc. <b>159</b>, 389 (1972)), and is contrary to that of Petschek and Thorne (Astrophys. J. <b>147</b>, 1157 (1967)) and Vasyliunas (Rev. Geophys. Space Phys. <b>13</b>, 303 (1975)).</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 9\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2688-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2688-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical experiments of fast magnetic reconnection driven by the rapidly expanding plasma
Three modes of magnetic reconnection, flux pile-up, Sonnerup, and hybrid, are examined in the context of driven magnetic reconnection via 2D and 2.5D magnetohydrodynamic (MHD) numerical simulations. They result from variances in gas pressure and magnetic field strength in the reconnection inflow region. The simulation demonstrates that the Spitzer diffusion region of magnetic reconnection is not just an X-point; instead, it appears as a slim and elongated current sheet that creates two pairs of the slow-mode shock (SS) on either end. These shocks contribute to forming four boundaries that separate the inflow from the outflow. In the regions far from the Spitzer diffusion region, two sets of rotational discontinuity (RD) stand inside the SSs and form the combination of SS and RD structures. The RDs reverse the magnetic field inside the reconnection outflow region, and create a W-shaped magnetic field in that region. The scenario that the rotation of the magnetic field is not caused by an intermediate wave, and the SS is located outside the RD, is consistent with the inference of Priest (Mon. Not. R. Astron. Soc. 159, 389 (1972)), and is contrary to that of Petschek and Thorne (Astrophys. J. 147, 1157 (1967)) and Vasyliunas (Rev. Geophys. Space Phys. 13, 303 (1975)).
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.