快速膨胀等离子体驱动快速磁重联的数值实验

IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Shanshan Xu, Jun Lin, Zhixing Mei
{"title":"快速膨胀等离子体驱动快速磁重联的数值实验","authors":"Shanshan Xu,&nbsp;Jun Lin,&nbsp;Zhixing Mei","doi":"10.1007/s11433-025-2688-0","DOIUrl":null,"url":null,"abstract":"<div><p>Three modes of magnetic reconnection, flux pile-up, Sonnerup, and hybrid, are examined in the context of driven magnetic reconnection via 2D and 2.5D magnetohydrodynamic (MHD) numerical simulations. They result from variances in gas pressure and magnetic field strength in the reconnection inflow region. The simulation demonstrates that the Spitzer diffusion region of magnetic reconnection is not just an X-point; instead, it appears as a slim and elongated current sheet that creates two pairs of the slow-mode shock (SS) on either end. These shocks contribute to forming four boundaries that separate the inflow from the outflow. In the regions far from the Spitzer diffusion region, two sets of rotational discontinuity (RD) stand inside the SSs and form the combination of SS and RD structures. The RDs reverse the magnetic field inside the reconnection outflow region, and create a W-shaped magnetic field in that region. The scenario that the rotation of the magnetic field is not caused by an intermediate wave, and the SS is located outside the RD, is consistent with the inference of Priest (Mon. Not. R. Astron. Soc. <b>159</b>, 389 (1972)), and is contrary to that of Petschek and Thorne (Astrophys. J. <b>147</b>, 1157 (1967)) and Vasyliunas (Rev. Geophys. Space Phys. <b>13</b>, 303 (1975)).</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 9","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical experiments of fast magnetic reconnection driven by the rapidly expanding plasma\",\"authors\":\"Shanshan Xu,&nbsp;Jun Lin,&nbsp;Zhixing Mei\",\"doi\":\"10.1007/s11433-025-2688-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three modes of magnetic reconnection, flux pile-up, Sonnerup, and hybrid, are examined in the context of driven magnetic reconnection via 2D and 2.5D magnetohydrodynamic (MHD) numerical simulations. They result from variances in gas pressure and magnetic field strength in the reconnection inflow region. The simulation demonstrates that the Spitzer diffusion region of magnetic reconnection is not just an X-point; instead, it appears as a slim and elongated current sheet that creates two pairs of the slow-mode shock (SS) on either end. These shocks contribute to forming four boundaries that separate the inflow from the outflow. In the regions far from the Spitzer diffusion region, two sets of rotational discontinuity (RD) stand inside the SSs and form the combination of SS and RD structures. The RDs reverse the magnetic field inside the reconnection outflow region, and create a W-shaped magnetic field in that region. The scenario that the rotation of the magnetic field is not caused by an intermediate wave, and the SS is located outside the RD, is consistent with the inference of Priest (Mon. Not. R. Astron. Soc. <b>159</b>, 389 (1972)), and is contrary to that of Petschek and Thorne (Astrophys. J. <b>147</b>, 1157 (1967)) and Vasyliunas (Rev. Geophys. Space Phys. <b>13</b>, 303 (1975)).</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 9\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2688-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2688-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过二维和2.5维磁流体动力学(MHD)数值模拟,研究了驱动磁重联的三种模式:磁堆、Sonnerup和混合模式。它们是由重接流入区气体压力和磁场强度的变化引起的。仿真结果表明,磁重联的斯必泽扩散区不只是一个x点;相反,它看起来像一个细长的电流片,在两端产生两对慢模冲击(SS)。这些冲击有助于形成四个边界,将流入和流出分开。在远离Spitzer扩散区的区域,两组旋转不连续结构(RD)位于SSs内部,形成了SS和RD结构的组合。RDs将重联流出区内部的磁场反向,并在该区域形成w形磁场。磁场的旋转不是由中间波引起的,并且SS位于RD之外的情况与Priest (Mon. not)的推断是一致的。r·阿斯特朗。Soc. 159, 389(1972)),并与Petschek和Thorne (astrophysics)的观点相反。J. 147, 1157(1967))和Vasyliunas (Rev. geophysical .)。空间物理学,13,303(1975))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical experiments of fast magnetic reconnection driven by the rapidly expanding plasma

Three modes of magnetic reconnection, flux pile-up, Sonnerup, and hybrid, are examined in the context of driven magnetic reconnection via 2D and 2.5D magnetohydrodynamic (MHD) numerical simulations. They result from variances in gas pressure and magnetic field strength in the reconnection inflow region. The simulation demonstrates that the Spitzer diffusion region of magnetic reconnection is not just an X-point; instead, it appears as a slim and elongated current sheet that creates two pairs of the slow-mode shock (SS) on either end. These shocks contribute to forming four boundaries that separate the inflow from the outflow. In the regions far from the Spitzer diffusion region, two sets of rotational discontinuity (RD) stand inside the SSs and form the combination of SS and RD structures. The RDs reverse the magnetic field inside the reconnection outflow region, and create a W-shaped magnetic field in that region. The scenario that the rotation of the magnetic field is not caused by an intermediate wave, and the SS is located outside the RD, is consistent with the inference of Priest (Mon. Not. R. Astron. Soc. 159, 389 (1972)), and is contrary to that of Petschek and Thorne (Astrophys. J. 147, 1157 (1967)) and Vasyliunas (Rev. Geophys. Space Phys. 13, 303 (1975)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信