O. L. Gribkova, I. R. Sayarov, V. A. Kabanova, A. A. Nekrasov, A. R. Tameev
{"title":"Electrodeposited Composite of Poly-3,4-ethylenedioxythiophene with Fullerenol Photoactive in the Near-IR Range","authors":"O. L. Gribkova, I. R. Sayarov, V. A. Kabanova, A. A. Nekrasov, A. R. Tameev","doi":"10.1134/S1023193524700381","DOIUrl":"10.1134/S1023193524700381","url":null,"abstract":"<p>The electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of a water-soluble Na<sup>+</sup>-containing fullerene with hydroxyl groups is studied. The monitoring of the electrosynthesis process by spectroscopic methods shows that during the polymerization of 3,4-ethylenedioxythiophene, fullerenol incorporates into the film composition, regardless of the fullerenol concentration used. The electronic structure, morphology, spectroelectrochemical and electrochemical properties, and near-IR photoconductivity of the poly-3,4-ethylenedioxythiophene–fullerenol composite films are studied for the first time. A mechanism of photoconductivity is proposed, related to the fact that during the photoexcitation of the composite, the electron transfer from the polaron (bipolaron) state of poly-3,4-ethylenedioxythiophene to the LUMO level of fullerenol increases the concentration of photogenerated charge carriers.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 10","pages":"813 - 822"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric Double Layer Capacitors: A Review","authors":"Yu. M. Volfkovich","doi":"10.1134/S1023193524700356","DOIUrl":"10.1134/S1023193524700356","url":null,"abstract":"<p>A review of modern scientific literature on the electric double layer capacitors based on the recharging of the electric double layer is presented. The electric double layer capacitors are used in pulse technology devices, as electric energy storage devices, for starter firing, for the recuperating of the braking energy of internal combustion engines, for smoothing peak loads in electric networks, and in various portable devices. The electric double layer capacitors are subdivided into the power electric double layer capacitors and the energy ones. The power (pulse) electric double layer capacitors have a high specific power (up to hundreds of kW/kg), whereas the energy electric double layer capacitors have a high specific energy (~25 W h/kg and higher). Compared to batteries, the power electric double layer capacitors have a much higher power density and better cyclability—up to hundreds of thousands and millions of cycles. Publications on the electric double layer capacitors’ self-discharge are reviewed.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 10","pages":"761 - 794"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research Progress of Cobalt Based Phosphide Anode Materials for Sodium-Ion Batteries","authors":"Xinyue Zhang, Jiachang Zhao","doi":"10.1134/S1023193524700411","DOIUrl":"10.1134/S1023193524700411","url":null,"abstract":"<p>Sodium-ion batteries (SIBs) are important new energy storage devices. Due to the abundance of sodium and the similar operating principles of SIBs to lithium-ion batteries (LIBs), SIBs are considered as an important complementary technology to LIBs that will dominate the next generation of energy storage. However, large-scale application of SIBs is hindered by severe capacity decay and low rate capability. The actual capacity of batteries is closely related to the specific capacity of anode materials. Therefore, the development of high-capacity anode materials has become a key area of research for SIBs. Transition metal compounds can improve these problems due to their unique electronic band structure, good chemical adsorption ability, and excellent catalytic ability. Cobalt-based phosphide anode materials have the characteristics of high theoretical capacity, abundant reserves, and low prices, making them become promising anode materials for SIBs. Furthermore, adjusting the size and structure and combining with carbon-based or non-carbon-based materials can effectively alleviate the defects of cobalt-based phosphide electrodes, thereby improving the specific capacity, cyclic stability, and rate capability of SIBs. This review summarizes the recent research progress on cobalt-based phosphide anode materials for SIBs, including the current research status and future development prospects.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 10","pages":"852 - 871"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junzhe Wang, Anning Zhou, Zongxing Song, Guoyang Liu, Sicheng Qin, Dan Wang
{"title":"Numerical Modeling of Electrolyte-Supported Button Solid Oxide Direct Carbon Fuel Cell Based on Boudouard Reaction","authors":"Junzhe Wang, Anning Zhou, Zongxing Song, Guoyang Liu, Sicheng Qin, Dan Wang","doi":"10.1134/S1023193524700332","DOIUrl":"10.1134/S1023193524700332","url":null,"abstract":"<p>The solid oxide direct carbon fuel cell (SO–DCFC) is a vital future technology for producing high-efficiency and environmentally friendly electricity. To improve the performance of SO–DCFC, it is required to examine the optimal operation condition selection and anode reaction process optimization. The DCFC reaction model is derived from the anode Boudouard reaction in this study. Electrochemical reaction dynamics, mass transfer, and electrode processes are incorporated into the model. Higher Boudouard reaction rate, gasification rate, and power density of anode carbon were discovered to impact the performance of fuel cells directly. In addition, simulation provides the CO concentration and current density distribution under different output voltage settings, which can be used to assess the performance and give a basis for the best design of DCFC.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"737 - 748"},"PeriodicalIF":1.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Memoona Shakoor, Nauman Sadiq, Muafia Akbar, Muhammad Shafique, Ghulam Mustafa
{"title":"Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Moxifloxacin","authors":"Memoona Shakoor, Nauman Sadiq, Muafia Akbar, Muhammad Shafique, Ghulam Mustafa","doi":"10.1134/S1023193524700320","DOIUrl":"10.1134/S1023193524700320","url":null,"abstract":"<p>Moxifloxacin evaluation in pharmaceuticals and biological fluids is in high demand. It is important to fabricate a simple, sensitive, selective, miniaturized, and cost-effective chemical sensor to detect moxifloxacin in the environment. In this study, an electrochemical sensor based on molecularly imprinted polymer (MIP) was fabricated for the detection of moxifloxacin in which interdigital electrodes (IDEs) were used as transducers. Thermal free-radical bulk polymerization was used to synthesize MIP, methacrylic acid (MAA) was used as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, azobisisobutyronitrile (AIBN) as a free radical initiator, and dimethyl sulfoxide (DMSO) as a porogenic solvent in a poly (methacrylic acid) system for efficient recognition. The LCR meter was used to measure various electrical properties such as inductance and resistance. A concentration-dependent linear response was observed by the fabricated sensor having a lower limit of detection of 240 and 63 ppb for series and parallel resistance, respectively. Meanwhile, series and parallel inductance had lower detection limits of 48 and 8 ppb, respectively. Furthermore, in the presence of competing agents such as uric acid, ascorbic acid, and paracetamol, the fabricated sensor showed a selective response for moxifloxacin. The fabricated sensor also showed reversible and reproducible response.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"728 - 736"},"PeriodicalIF":1.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. K. Kochergin, N. S. Komarova, A. S. Kotkin, I. I. Khodos, R. A. Manzhos, A. G. Krivenko
{"title":"Electrochemical Synthesis of a Composite of Few-Layer Graphene Structures with PdNi-Alloy Nanoparticles and Its Electrocatalytic Activity in the Methanol Oxidation Reaction","authors":"V. K. Kochergin, N. S. Komarova, A. S. Kotkin, I. I. Khodos, R. A. Manzhos, A. G. Krivenko","doi":"10.1134/S1023193524700307","DOIUrl":"10.1134/S1023193524700307","url":null,"abstract":"<p>Nanocomposites of few-layer graphene structures with PdNi-alloy nanoparticles are synthesized using the electrochemical dispersion method. The composites’ chemical modification is shown to lead to a significant increase in their electrocatalytic activity in the methanol oxidation reaction.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"711 - 715"},"PeriodicalIF":1.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Belmesov, L. V. Shmygleva, N. V. Romanova, M. Z. Galin, A. V. Levchenko
{"title":"Electrocatalysts Based on Platinized Titanium Dioxide Doped with Ruthenium for Hydrogen and Carbon-Monoxide Potentiometric Sensors","authors":"A. A. Belmesov, L. V. Shmygleva, N. V. Romanova, M. Z. Galin, A. V. Levchenko","doi":"10.1134/S1023193524700290","DOIUrl":"10.1134/S1023193524700290","url":null,"abstract":"<p>The electrocatalysts based on platinized TiO<sub>2</sub>(Ru) oxides with different ruthenium content are studied as the working electrode in solid-state potentiometric sensors for H<sub>2</sub> and CO. Increasing the ruthenium content does not affect the size of platinum particles, but reduces its content in the metallic state. The results of X-ray diffraction, X-ray fluorescence, and scanning electron microscopic studies are presented. The synthesized electrocatalysts are tested as the working-electrode materials in hydrogen and carbon monoxide sensors for the gas concentration in the air flow from 1 to 50 000 ppm. The characteristics of the sensors are shown to depend on the oxide support composition and structure. The electrocatalysts with the rutile structure are recommended for the practical use; the ruthenium content is determined by the range of analyzed CO concentrations.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"699 - 710"},"PeriodicalIF":1.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. I. Istakova, D. V. Konev, D. O. Tolstel, E. A. Ruban, M. S. Krasikova, M. A. Vorotyntsev
{"title":"A High Discharge Power Density Single Cell of Hydrogen–Vanadium Flow Battery","authors":"O. I. Istakova, D. V. Konev, D. O. Tolstel, E. A. Ruban, M. S. Krasikova, M. A. Vorotyntsev","doi":"10.1134/S1023193524700319","DOIUrl":"10.1134/S1023193524700319","url":null,"abstract":"<p>Hybrid flow chemical power source (Pt–C)H<sub>2</sub>|Nafion|VO<sub>2</sub><sup>+</sup>(C) in which the membrane–electrode assembly combines gas-diffusion anode of hydrogen–air fuel cell and cathode of vanadium redox flow battery is studied. Concept of such a hydrogen–vanadium flow battery had been proposed earlier (2013) as an alternative to the vanadium redox flow battery, also designed for large-scale electrical energy storage but its practical implementation has so far been limited to single cells having the active area within several tens of cm<sup>2</sup>. The goal of this work is the establishing of the factors limiting the discharge power density of such hybrid. hydrogen–vanadium flow battery cells which is inferior to both hydrogen–air fuel cell and vanadium redox flow batteries, even though the hydrogen–vanadium flow battery cell represents a combination of their more reversible half-cells. The object of the study is a cell with a 2 × 2 cm membrane–electrode assembly equipped with Luggin capillary on the vanadium electrolyte side. Measurements of the current–voltage characteristics of the entire cell, as well as the polarization characteristics of its half-cells, are performed using a six-electrode scheme of the cell connection with varied vanadium electrolyte circulation rate and different cathode materials (carbon felts, 4.6 or 2.5 mm thick, as well as carbon paper). The contribution of the hydrogen gas diffusion electrode to the total dc resistance of the hydrogen–vanadium flow battery cell is shown being twice that of the flow-through vanadium cathode. A record high discharge power density has been achieved: 0.75 W cm<sup>–2</sup>, for the cell based on the commercially available material, Sigracell GFD 2.5 EA-TA carbon felt as the cathode material, without its special surface modification.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"716 - 727"},"PeriodicalIF":1.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studies on Porous Nanostructured Palladium–Cobalt–Silica as Heterogeneous Catalysts for Oxygen Evolution Reaction","authors":"Prem. C. Pandey, Chitra Singh","doi":"10.1134/S1023193524700344","DOIUrl":"10.1134/S1023193524700344","url":null,"abstract":"<p>Co-NTA nanowires were used as a precursor in synthesizing Co@NC, CoPd@NC-1, and CoPd@NC-2 via active participation of 3-aminopropyltrimethoxysilane (3-APTMS). To regulate the existence of nanostructured silica after calcination at 700°C beneficial in OER, porous CoPd@NC was created using a variable amount of nanostructured silica in an N-doped carbon matrix. XRD, TEM, SEM, and EDX investigated coPd@NC-1 with high silica content and CoPd@NC-2 with relatively less silica content. Nanostructured silica enabled the formation of stabilized bimetallic Nano geometry of cobalt and palladium components, followed by improvement in OER compared to that made without nanostructured silica. The nanostructured silica-derived thin film made from CoPd@NC-1 generated a very high current density at a low potential of 0.79 V vs. RHE with current density of 10 mA cm<sup>–2</sup> together small Tafel slope of 28 mV/decade for (CoPd@NC-1), 44 mV/decade for (CoPd@NC-2) at a catalyst loading of 3.5 mg cm<sup>–2</sup> on the carbon cloth.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"749 - 759"},"PeriodicalIF":1.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. M. Pallavi, G. P. Mamatha, Pampapathi Shekharagouda, Chethan Krishnamurthy
{"title":"Anthraquinone Azo Dye as a Novel Electrochemical Platform for the Simultaneous Detection of Dopamine and Serotonin: Synthesis and Characterization","authors":"K. M. Pallavi, G. P. Mamatha, Pampapathi Shekharagouda, Chethan Krishnamurthy","doi":"10.1134/S1023193524700289","DOIUrl":"10.1134/S1023193524700289","url":null,"abstract":"<p>A novel electrochemical sensor was designed by using a synthesized anthraquinone azo dye-based glassy carbon electrode was fabricated and used for enhanced selective determination of Dopamine (DA) and serotonin (5-HT) simultaneously at an optimum working potential (0.11 V for DA and 0.27 V for 5-HT). Utilizing spectroscopic techniques like FT-IR, HR-MS, and <sup>1</sup>H-NMR, a synthesized azo dye molecule structure was characterized. Different electrochemical techniques, including cyclic voltammetry (CV) and differential pulse voltammetry (DPV), were employed to study the electrochemical sensing abilities of the modified working electrode. The DA and 5-HT linear response ranges between current intensities and concentration were found to be 0.001–0.055 and 0.01–1.15 µM and the lower limit of detection (LOD) was 1.9 and 4.16 nM respectively. Further demonstrating the constructed electrochemical sensor’s practical application were tests of reproducibility, stability, and real sample analysis with excellent recovery.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 8","pages":"687 - 698"},"PeriodicalIF":1.1,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}