K. M. Pallavi, G. P. Mamatha, Pampapathi Shekharagouda, Chethan Krishnamurthy
{"title":"Anthraquinone Azo Dye as a Novel Electrochemical Platform for the Simultaneous Detection of Dopamine and Serotonin: Synthesis and Characterization","authors":"K. M. Pallavi, G. P. Mamatha, Pampapathi Shekharagouda, Chethan Krishnamurthy","doi":"10.1134/S1023193524700289","DOIUrl":null,"url":null,"abstract":"<p>A novel electrochemical sensor was designed by using a synthesized anthraquinone azo dye-based glassy carbon electrode was fabricated and used for enhanced selective determination of Dopamine (DA) and serotonin (5-HT) simultaneously at an optimum working potential (0.11 V for DA and 0.27 V for 5-HT). Utilizing spectroscopic techniques like FT-IR, HR-MS, and <sup>1</sup>H-NMR, a synthesized azo dye molecule structure was characterized. Different electrochemical techniques, including cyclic voltammetry (CV) and differential pulse voltammetry (DPV), were employed to study the electrochemical sensing abilities of the modified working electrode. The DA and 5-HT linear response ranges between current intensities and concentration were found to be 0.001–0.055 and 0.01–1.15 µM and the lower limit of detection (LOD) was 1.9 and 4.16 nM respectively. Further demonstrating the constructed electrochemical sensor’s practical application were tests of reproducibility, stability, and real sample analysis with excellent recovery.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 8","pages":"687 - 698"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524700289","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel electrochemical sensor was designed by using a synthesized anthraquinone azo dye-based glassy carbon electrode was fabricated and used for enhanced selective determination of Dopamine (DA) and serotonin (5-HT) simultaneously at an optimum working potential (0.11 V for DA and 0.27 V for 5-HT). Utilizing spectroscopic techniques like FT-IR, HR-MS, and 1H-NMR, a synthesized azo dye molecule structure was characterized. Different electrochemical techniques, including cyclic voltammetry (CV) and differential pulse voltammetry (DPV), were employed to study the electrochemical sensing abilities of the modified working electrode. The DA and 5-HT linear response ranges between current intensities and concentration were found to be 0.001–0.055 and 0.01–1.15 µM and the lower limit of detection (LOD) was 1.9 and 4.16 nM respectively. Further demonstrating the constructed electrochemical sensor’s practical application were tests of reproducibility, stability, and real sample analysis with excellent recovery.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.