Noa Ligot, Pierre Miny de Tornaco, Benoît Pereira, Patrick Bogaert, Pierre Delmelle
{"title":"Exposure of vegetables to simulated volcanic ashfall reveals production loss controlled by plant traits and growth stage","authors":"Noa Ligot, Pierre Miny de Tornaco, Benoît Pereira, Patrick Bogaert, Pierre Delmelle","doi":"10.1002/agg2.20494","DOIUrl":"https://doi.org/10.1002/agg2.20494","url":null,"abstract":"<p>Explosive volcanic eruptions represent a serious threat to agriculture in many countries. Ashfall can cause substantial damage to crops, jeopardizing farmers' livelihoods and potentially endangering food security. Previous field-based studies have associated ash impact on crops with the deposit thickness, or, correspondingly, with the mass load. However, non-volcanic factors, including plant traits and growth stage, also influence the vulnerability of crops to ashfall. To accurately estimate the risk of crop production loss in ash-prone areas, it is essential to evaluate how these factors govern the impact of ash on crops. We grew leafy (lettuce, <i>Lactuca sativa</i>; hative d'Heverlée, and cabbage, <i>Brassica oleracea</i>; cabus de Chateaurenard) and bulb and root (onion, <i>Allium cepa</i>; blanc premier, and carrot, <i>Daucus carota</i>; hative d‘Oxhella) vegetables in a greenhouse and exposed them at two growth stages to simulated ash deposits ranging from 5 to 40 kg m<sup>−2</sup>. Our results confirm that crop production loss increases with higher ash mass load, reaching 27%–69% for deposits of 20–40 kg m<sup>−2</sup>. Additionally, they indicate a higher vulnerability of carrot and onion plants than previously reported. Lettuce and cabbage plants were more severely impacted by ash compared to onion and carrot plants, illustrating the role of plant traits in controlling ash interception and retention on foliage. Furthermore, the plant growth stage emerged as another vulnerability factor. Using the new impact data, we calculated a theoretical production loss in a cultivated area potentially affected by ashfall. This revealed that a significant portion of the crop production loss can be associated with low ash mass loads (5 kg m<sup>−2</sup>), emphasizing the importance of including distal regions in the impact assessment of ashfall on crops.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas R. Butts, Maria C. C. R. Souza, Jason K. Norsworthy, L. Tom Barber, Jarrod T. Hardke
{"title":"Rice response to fluridone following topsoil removal on a precision-leveled field","authors":"Thomas R. Butts, Maria C. C. R. Souza, Jason K. Norsworthy, L. Tom Barber, Jarrod T. Hardke","doi":"10.1002/agg2.20541","DOIUrl":"https://doi.org/10.1002/agg2.20541","url":null,"abstract":"<p>Furrow-irrigated rice (<i>Oryza sativa</i> L.) production requires additional management options without the cultural strategy of a flood. In 2023, fluridone (Brake) was registered for use in rice production. Precision-leveling land is an important aspect of maintaining an effective irrigation flow path; however, the removal of topsoil can severely impact crop response from residual herbicides. The objective of this study was to evaluate the impact of fluridone on rice response when applied to a precision-leveled field following topsoil removal. An on-farm field study was conducted in 2023 near Osceola, AR, with a Sharkey-Steele clay complex soil texture. The study consisted of six herbicide treatments applied at the rice three-leaf stage. These treatments included clomazone, quinclorac, and fluridone at three rates (0.5×, 1×, and 2× of a label rate) and a nontreated control. Across evaluation times, maximum visual rice injury was greater than 25% and 65% for the fluridone 1× and 2× treatments, respectively. Rice canopy coverage was reduced in the fluridone 1× and 2× treatments compared to all other treatments from 6 to 10 weeks after application (WAA). Rice heading in the fluridone 2x treatment was delayed by more than 60 and 30 percentage points at 11 and 12 WAA, respectively, compared to all other treatments. Rough rice yield in the fluridone 2× treatment was reduced by 21% compared to all other treatments. Overall, fluridone 1× and 2× rates caused substantial rice injury and would not be recommended on a precision-leveled field.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bibliometric analysis of management practices in US corn (1990–2020)","authors":"Namita Sinha, Jagmandeep Singh Dhillon","doi":"10.1002/agg2.20536","DOIUrl":"https://doi.org/10.1002/agg2.20536","url":null,"abstract":"<p>Bibliometric analysis explores large volume of scientific data, revealing trends and insights in a specific research field. Consistently, a bibliometric analysis of 30 years (1990–2020) was performed within the US corn (<i>Zea mays</i> L.) production using the Scopus database and VOSviewer. Search query was performed within the article title, abstract, and keywords indicative of management practices in corn. Exclusion criterion based on subject area and journals generated a total of 7468 publications. The data analysis revealed contributions from 7327 authors and 47 organizations documented in 69 journals. The top five organizations leading the investigation were United States Department of Agriculture – Agricultural Research Service, Iowa State University, University of Nebraska, University of Illinois, and Purdue University. The most prolific authors were Dr. Rattan Lal (Ohio State University, Columbus, OH), Dr. Douglas L. Karlen (USDA-ARS, Ames, IA), Dr. Kenneth G. Cassman (University of Nebraska, Lincoln, NE), Dr. Lajpat Rai Ahuja (USDA-ARS, Ft. Collins, CO), and Dr. John Walsh Doran (USDA-ARS, Lincoln, NE). Journals with most publications were <i>Agronomy Journal</i>; <i>Soil Science Society of America Journal</i>; <i>Soil and Tillage Research</i>; Crop Science; and <i>Agriculture, Ecosystems & Environment</i>. Furthermore, author keywords differed from queried keywords, and no-till, nitrogen, cover crop, soybean, irrigation, phosphorus, conservation tillage, yield, and water quality were most prominent. Moreover, there was an evident shift in keywords and an observed trend between 1998 and 2020. Overall, these findings allow researchers to explore network maps via the hyperlinks present in papers, identifying research gaps and advancing original studies to bridge gaps in the literature.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Payton B. Davis, Dara M. Park, Aurelie M. Poncet, Brook T. Russell, Debabrata Sahoo
{"title":"Winter cover crop performance in the Southern Piedmont region of South Carolina","authors":"Payton B. Davis, Dara M. Park, Aurelie M. Poncet, Brook T. Russell, Debabrata Sahoo","doi":"10.1002/agg2.20535","DOIUrl":"https://doi.org/10.1002/agg2.20535","url":null,"abstract":"<p>Cover crops (CCs) offer in-field and environmental benefits when integrated into cropping systems. Low CC adoption in the Southern Piedmont region of South Carolina is partially due to the lack of information on CC performance and benefits within the region. To address this, eight winter CCs and a fallow/pigweed (<i>Amaranthus</i> spp.) treatment were investigated for their influence on soil temperature, volumetric water content (VWC), percent cover, biomass, and the occurrence of soil water repellency (SWR). A randomized complete block design experiment was conducted in the fall and winter of 2021–2022 (EXP A) and repeated in 2022–2023 (EXP B). Experiments were treated separately as methods were revised for EXP B. CCs minimally influenced soil VWC over both experiments with no consistent trend. CC did not influence soil temperatures during EXP A. In EXP B, the fallow/pigweed had the highest soil temperatures on two (out of 10) measuring events (<i>p</i> < 0.05). No SWR was found in either experiment. Establishment and fresh and dry CC biomass were most likely influenced by air temperatures and daylight hours driving germination during days with minimal rainfall. In both experiments, annual rye (<i>Lolium multiflorum</i>) produced cover quickly and yielded high biomass. Crimson clover (<i>Trifolium incarnatum</i>) took longer to establish but also yielded one of the highest biomasses. This study demonstrated that winter CCs had little influence on soil physical properties and that while cereal rye (<i>Secale cereale</i>) is a common CC utilized for erosion control, the greater biomass and surface roots of annual rye make it a superior CC for use in Southern Piedmont agroecosystems.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20535","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Grain yield and quality responses to nitrogen application rate and timing in dry direct broadcast seeded rice under different weather conditions","authors":"Ryo Tanaka, Hiroshi Nakano","doi":"10.1002/agg2.20519","DOIUrl":"https://doi.org/10.1002/agg2.20519","url":null,"abstract":"<p>In rice (<i>Oryza sativa</i> L.) production, dry direct seeding is one of the most essential technologies to reduce labor input and to increase net income. Field experiments were conducted in southwestern Japan in 2019 and 2020 to determine the effects of nitrogen (N) application rate and timing on grain yield, lodging, grain appearance, and protein content in dry direct broadcast seeded rice under different weather conditions. In 2019, plants had larger source ability using the normal solar radiation at the tillering stage, regardless of N application timings. Plants with applied N at the reproductive stage produced the highest grain yield and the highest percentage of undamaged grains under high air temperature condition during the early ripening stage. In 2020, plants did not have larger source ability due to the lower solar radiation at the tillering stage. Plants with applied N at the reproductive stage produced the highest grain yield but produced the highest percentage of green immature grains. These results mean that solar radiation at the tillering stage may be important for increasing grain yield and quality in dry direct broadcast seeded rice. Therefore, since plants grown under normal solar radiation condition at the tillering stage may have large source ability, more N application at the reproductive stage may be recommended to increase grain yield. In contrast, since plants grown under low solar radiation condition at the tillering stage may have small source ability, less N application at the reproductive stage may be recommended to decrease the occurrence of green immature grains.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayush K. Sharma, Amanpreet Kaur Sandhu, Simranpreet Kaur Sidhu, Simon Riley, Winniefred Griffin, Diego Arruda Huggins de Sa Leitão, Lincoln Zotarelli, Lakesh K. Sharma
{"title":"Sulfur source effects on soil, vegetation indices, biomass, and uptake in potato","authors":"Ayush K. Sharma, Amanpreet Kaur Sandhu, Simranpreet Kaur Sidhu, Simon Riley, Winniefred Griffin, Diego Arruda Huggins de Sa Leitão, Lincoln Zotarelli, Lakesh K. Sharma","doi":"10.1002/agg2.20530","DOIUrl":"https://doi.org/10.1002/agg2.20530","url":null,"abstract":"<p>Sulfur (S) is necessary for amino acid production, disease resistance, protein synthesis, and nitrogen assimilation in plants. We tested the performance of three S sources (magnesium sulfate [EPTOP], gypsum, and ammonium sulfate [AS]) at two different rates (45 and 90 kg S ha<sup>−1</sup>) on soil S availability, vegetative indices (VIs), above- and belowground biomass (BGB), and potato (<i>Solanum tuberosum</i> L.) S uptake. For VIs such as normalized difference vegetative index, normalized difference red-edge index, and chlorophyll content, the maximum values were reported when gypsum and EPTOP were applied compared to AS. These differences were decreased later in the season. Significant interaction effects were reported among sites, sampling events, and sites and S sources for aboveground biomass (AGB). Similar trends were reported for the BGB, where the significant interaction effect was reported among the S sources and sampling event and S sources and sites. The AGB S uptake was affected due to the sites and sampling event. However, BGB S uptake was influenced by the interactive effect of S sources, sites, and sampling events. The VIs did not have a significant association between soil S concentration and AGB S uptake. It was found that the field history had a notable effect on the crop responses to variable S sources. In conclusion, applying S rates and sources has distinct responses, which depend on soil history and chemical properties, and that should be considered when making choices for S application in potatoes.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resistance of bread wheat (Triticum aestivum L.) varieties to fusarium head blight (Fusarium graminearum) in Ethiopia","authors":"Muluken Getahun, Chemeda Fininsa, Abdi Mohammed, Zelalem Bekeko","doi":"10.1002/agg2.20531","DOIUrl":"https://doi.org/10.1002/agg2.20531","url":null,"abstract":"<p>Fusarium head blight (FHB) is a devastating disease reduces wheat yield and quality. This study was aimed to evaluate wheat varieties' responses to spray inoculation with <i>Fusarium graminearum</i> mixture isolates under greenhouse conditions. The treatments were laid out in a randomized completely block design with three replications using 24 bread wheat varieties registered in Ethiopia. The varieties inoculated with mixed inoculum derived from four pathogenic isolates of <i>F. graminearum</i> that had been isolated from wheat kernels. Disease severity was evaluated using a 1–9 scale based on the proportion of bleached spikelets, and the area under disease progress curve (AUDPC) was determined from the disease severity data. At harvest, the kernel weight reduction was determined in comparison to the control. The evaluated traits were significantly interrelated and showed high and significant variation among (<i>p</i> < 0.0001) wheat varieties. Disease severity index among the varieties varied from 29% to 72%, while AUDPC varied from 326%- to 1010%-days. The disease progress rate of the Kingbird variety inoculated with <i>F. graminearum</i> was the slowest (0.0191 units day<sup>−1</sup>), whereas Ogolcho had the fastest disease progression rate (0.0581 units day<sup>−1</sup>). Kingbird, Wane, and Limu were moderately resistant, with lower disease severity, AUDPC, and a reduction in 1000-grain weight and grain weight per spike. Dereselgne, Dambal, and Ogolcho varieties were highly susceptible, with the greatest grain weight per spike reduction (53.2%, 41.4%, and 37.4%) and 1000-grain weight reduction (41.5%, 42.8%, and 37.5%), respectively. The results implied that there were different levels of FHB resistance in Ethiopian bread wheat varieties. Although current greenhouse evaluation of varieties gives encouraging results, field testing is required to confirm the current findings.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatum Simms, Kristofor R. Brye, Trenton L. Roberts, Lauren F. Greenlee
{"title":"Soil profile distribution of nutrients in contrasting soils amended with struvite and other conventional phosphorus fertilizers","authors":"Tatum Simms, Kristofor R. Brye, Trenton L. Roberts, Lauren F. Greenlee","doi":"10.1002/agg2.20524","DOIUrl":"https://doi.org/10.1002/agg2.20524","url":null,"abstract":"<p>Phosphorus (P) can be recovered from wastewater and used as an alternative fertilizer, namely, struvite [MgNH<sub>4</sub>PO<sub>4</sub>·6(H<sub>2</sub>O)]. However, the soil mobility of wastewater-derived P and other nutrients needs to be evaluated. The objective of this study was to compare the vertical distribution of water-soluble (WS) soil P and other nutrients from a synthetic-wastewater-derived electrochemically precipitated struvite (ECST) to that from a chemically precipitated struvite (CPST), triple superphosphate (TSP), monoammonium phosphate (MAP), and a control in six soils from Arkansas (AR; loam [L] and silt loam [SiL]), Missouri (MO; SiL 1 and SiL 2), and Nebraska (NE; sandy loam [SL] and SiL). A column-leaching experiment was conducted with the six soils and five fertilizer-P treatments. Water-soluble (WS) P from the two struvite materials generally did not differ (<i>p</i> > 0.05) and was similar to that of MAP in the depths of 0–3, 3–6, and 6–10 cm, but was greater than that of TSP in the top 6 cm in four of the six soils. WS P from CPST in the MO-SiL 2 and NE-SL soils (6.6 and 12.7 mg kg<sup>−1</sup>, respectively) was larger than that from ECST, MAP, and TSP. In the AR-L and MO-SiL 1 soils, TSP was the only fertilizer-P source that had increased WS P concentrations in the top 6 cm relative to the other fertilizer-P sources. Results showed that ECST-derived, WS P had similar soil profile distributions in the top 10 cm, suggesting that ECST will be equally protective of environmental health and leachate quality across multiple soil textures as other common fertilizer-P sources.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leah Ellman-Stortz, Katie Lewis, Terry Gentry, Paul DeLaune, Elizabeth Pierson, Nicholas Boogades
{"title":"Early impacts of cover crop selection on soil biological parameters during a transition to organic agriculture","authors":"Leah Ellman-Stortz, Katie Lewis, Terry Gentry, Paul DeLaune, Elizabeth Pierson, Nicholas Boogades","doi":"10.1002/agg2.20532","DOIUrl":"https://doi.org/10.1002/agg2.20532","url":null,"abstract":"<p>Although Texas is not widely known for organic production, it is responsible for most organic peanut production in the United States. When managed effectively, this can be a lucrative practice due to consumer demands. However, farmers pursuing organic management must undergo a 3-year transition period to obtain United States Department of Agriculture certification, which is often associated with depressed yields. The objective of this study was to measure the impact of organic management and cover crop selection on biological indicators of soil health during the second year of transitioning to an organic cotton–peanut rotation in West Texas. We conducted a field study at two locations, and soil health indicators including in situ respiration, carbon mineralization, enzyme activities, and phospholipid fatty acids (PLFAs) were measured. The use of a cover crop resulted in generally greater biological activities compared to the fallow after only one cover crop rotation, representing early elevated biological activities under plots treated with a cover crop. However, cover crop species selection typically does not affect soil biological parameters. Cover crop use also did not contribute to yield losses when compared to a fallow treatment. When comparing organic management to conventional management, both sites experienced elevated PLFA counts under organic management. Importantly, results indicated that although reduced peanut yields could be expected under transitional organic management, this was not cover crop species-specific, nor was it a guarantee. Given the economic risk of organic management for farmers, this study will benefit producers deciding whether to pursue organic production and cover cropping.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20532","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flórián Kovács, Enikő Papdi, Andrea Veres, Piroska Mohay, Anita Szegő, Katalin Juhos
{"title":"More efficient nitrogen utilization through wool pellet and soil inoculation","authors":"Flórián Kovács, Enikő Papdi, Andrea Veres, Piroska Mohay, Anita Szegő, Katalin Juhos","doi":"10.1002/agg2.20534","DOIUrl":"https://doi.org/10.1002/agg2.20534","url":null,"abstract":"<p>In recent years, many alternative bio-waste-based fertilizers have been proven to have a beneficial effect on plant nutrition. These also include wool pellet, whose comprehensive evaluation of synergistic effects on plant development and soil biological activity is still a limited field of investigation. To address this, we explored the potential of combining soil inoculations and N-rich wool pellet as ecologically sound alternatives to N fertilizers. In a pot experiment, we investigated the effect of <i>Azotobacter vinelandii</i>, the <i>Trichoderma harzianum</i> T34, and wool pellet, individually and in combination, on the growth and nitrate uptake of the test plants, as well as on the biological activity and permanganate-oxidizable carbon of the sandy soil with low organic matter content. The combination of <i>T. harzianum</i> + wool pellet showed the highest biological activity and permanganate-oxidizable carbon content, while the untreated control plants exhibited the lowest values. The treatment combination of wool pellet and <i>A. vinelandii</i> exhibited the highest nitrate uptake by plants. Measuring the concentration of photosynthetic pigments, net photosynthesis, transpiration rate, stomatal conductance, and total dry biomass, we found that the treatments led to a significant improvement in the photosynthetic intensity of lettuce plants. These results suggest that wool pellet served as a significant source of N and that their biological activity plays a key role in improving plant parameters. Moreover, the combination of microbial inoculants and wool pellet effectively increases N use efficiency in plant growth.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}