Impact of substrate pH and micronutrient fertility rates on Cannabis sativa

IF 1.5 Q3 AGRONOMY
Patrick Veazie, Paul Cockson, J. Turner Smith, Brian Schulker, Brian Jackson, Kristin Hicks, Brian Whipker
{"title":"Impact of substrate pH and micronutrient fertility rates on Cannabis sativa","authors":"Patrick Veazie,&nbsp;Paul Cockson,&nbsp;J. Turner Smith,&nbsp;Brian Schulker,&nbsp;Brian Jackson,&nbsp;Kristin Hicks,&nbsp;Brian Whipker","doi":"10.1002/agg2.70044","DOIUrl":null,"url":null,"abstract":"<p>Micronutrient accumulation caused by low pH can lead to toxicity and have detrimental impacts on plant growth. In substrates with elevated pH, micronutrients become less available. In the first experiment, industrial hemp (<i>Cannabis sativa</i> L.) growth was less at pH 3.0 and 4.0 than when pH was ≥5.0. Root growth was also observed to be inhibited at low pH levels. Leaf tissue micronutrient concentrations were higher at the lowest pH level, but no toxic accumulation occurred. In experiment 2, root growth had less mass at the lowest pH (3.1) and highest pH level (7.1). In experiment 3, substrates with three target pHs (3.8, 4.8, and 6.5) as well as three micronutrient concentrations (1X, 2X, and 4X) were examined to determine the impact of pH on micronutrient accumulation in two cultivars Cherry Wine (CW) and Sweetened (SW). Foliar micronutrient concentrations were the greatest in plants grown with pH 3.8, and the lowest concentrations occurred in plants grown at pH 6.5. Susceptibility to toxicity from micronutrient accumulation in plant tissue varied by cultivar. SW plants grown at pH 3.8 and 4X micronutrients resulted in lower leaf micronutrient toxicity symptoms, while CW plants grown under the same conditions did not. These studies suggest that <i>C. sativa</i> does not accumulate micronutrients to toxic levels at low pH when micros are applied within normal growing ranges, but that growth is inhibited at substrate pH &lt; 5.0.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://acsess.onlinelibrary.wiley.com/doi/10.1002/agg2.70044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Micronutrient accumulation caused by low pH can lead to toxicity and have detrimental impacts on plant growth. In substrates with elevated pH, micronutrients become less available. In the first experiment, industrial hemp (Cannabis sativa L.) growth was less at pH 3.0 and 4.0 than when pH was ≥5.0. Root growth was also observed to be inhibited at low pH levels. Leaf tissue micronutrient concentrations were higher at the lowest pH level, but no toxic accumulation occurred. In experiment 2, root growth had less mass at the lowest pH (3.1) and highest pH level (7.1). In experiment 3, substrates with three target pHs (3.8, 4.8, and 6.5) as well as three micronutrient concentrations (1X, 2X, and 4X) were examined to determine the impact of pH on micronutrient accumulation in two cultivars Cherry Wine (CW) and Sweetened (SW). Foliar micronutrient concentrations were the greatest in plants grown with pH 3.8, and the lowest concentrations occurred in plants grown at pH 6.5. Susceptibility to toxicity from micronutrient accumulation in plant tissue varied by cultivar. SW plants grown at pH 3.8 and 4X micronutrients resulted in lower leaf micronutrient toxicity symptoms, while CW plants grown under the same conditions did not. These studies suggest that C. sativa does not accumulate micronutrients to toxic levels at low pH when micros are applied within normal growing ranges, but that growth is inhibited at substrate pH < 5.0.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基质pH和微量元素对大麻育性的影响
低pH值引起的微量元素积累可导致毒性,并对植物生长产生不利影响。在pH值升高的基质中,微量营养素的可用性降低。在第一个实验中,工业大麻(Cannabis sativa L.)在pH为3.0和4.0时的生长低于pH≥5.0时的生长。根系生长也被观察到在低pH水平下受到抑制。在最低pH值下,叶片组织微量元素浓度较高,但未发生毒性积累。在试验2中,最低pH值(3.1)和最高pH值(7.1)下,根系生长质量较小。在试验3中,研究了3种目标pH值(3.8、4.8和6.5)和3种微量营养素浓度(1X、2X和4X)的底物,以确定pH值对樱桃酒(CW)和甜樱桃酒(SW)两种品种微量营养素积累的影响。pH值为3.8时叶片微量元素浓度最高,pH值为6.5时最低。植物组织中微量元素积累对毒性的敏感性因品种而异。在pH 3.8和4X微量营养素条件下生长的SW植株叶片微量营养素毒性症状较低,而在相同条件下生长的CW植株则没有。这些研究表明,当在正常生长范围内施用微量元素时,低pH下芥蓝的微量营养物质积累不会达到毒性水平,但在底物pH <下,芥蓝的生长受到抑制;5.0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信