Research on Chemical Intermediates最新文献

筛选
英文 中文
Removal of U(VI) from aqueous solution by Al0/Ni0 bimetallic material 用 Al0/Ni0 双金属材料从水溶液中去除铀(VI)
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-22 DOI: 10.1007/s11164-024-05356-9
Mengyue Ma, Weixuan Sang, Yishuo Zhang, Xiaoyan Li
{"title":"Removal of U(VI) from aqueous solution by Al0/Ni0 bimetallic material","authors":"Mengyue Ma,&nbsp;Weixuan Sang,&nbsp;Yishuo Zhang,&nbsp;Xiaoyan Li","doi":"10.1007/s11164-024-05356-9","DOIUrl":"10.1007/s11164-024-05356-9","url":null,"abstract":"<div><p>The widespread use of nuclear energy has led to a growing concern over environmental pollution resulted from uranium which has prompted global attention on wastewater treatment. Zero valent aluminum and zero valent nickel metals have been used by numerous researchers both domestically and internationally to removal U(VI) from aqueous solution due to their unique chemical properties. In this work, Al<sup>0</sup>/Ni<sup>0</sup> bimetallic material (Al<sup>0</sup>/Ni<sup>0</sup>-BM) was prepared by synchronous liquid-phase reduction method. Due to the structure of bimetallic material and synergistic effect, it exhibited a higher removal rate compared with single zero valent metal. At room temperature (25 ℃), the initial concentration of U(VI) was 20 mg/L, pH was 3.0, dosage was 0.25 g/L, and the removal rate could reach 98.90% after 60 min of reaction, well-fitting with the pseudo-second-order kinetic model, reduction model, and Langmuir isothermal adsorption model. The high removal performance was attributed to the electron transfer mechanism between material and U element and the adsorption effect of corresponding hydroxides. The thermodynamic parameters demonstrated that the adsorption of U(VI) on the Al<sup>0</sup>/Ni<sup>0</sup>-BM was an endothermic and spontaneous process controlled by physical and chemical adsorptions. And the synthesized Al<sup>0</sup>/Ni<sup>0</sup>-BM effectively improved the aggregation of zero valent metals in monomers. In conclusion, Al<sup>0</sup>/Ni<sup>0</sup>-BM showed an excellent potential for U(VI) removal from aqueous solution by zero valent bimetallic materials.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 9","pages":"4485 - 4501"},"PeriodicalIF":2.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Pd(II) complex of Schiff base encapsulated on ferrite–titania core [Pd@SB/Fe3O4–TiO2]: a recyclable nanocatalyst for Suzuki coupling and hydrogenation of aromatic nitro compounds 包裹在铁钛核上的新型希夫碱钯(II)配合物[Pd@SB/Fe3O4-TiO2]:一种用于芳香族硝基化合物铃木偶联和氢化的可回收纳米催化剂
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-22 DOI: 10.1007/s11164-024-05349-8
Ankush Kumar, Sukanya Sharma, Shally Sharma, Madhvi Bhardwaj, Suman Maji
{"title":"Novel Pd(II) complex of Schiff base encapsulated on ferrite–titania core [Pd@SB/Fe3O4–TiO2]: a recyclable nanocatalyst for Suzuki coupling and hydrogenation of aromatic nitro compounds","authors":"Ankush Kumar,&nbsp;Sukanya Sharma,&nbsp;Shally Sharma,&nbsp;Madhvi Bhardwaj,&nbsp;Suman Maji","doi":"10.1007/s11164-024-05349-8","DOIUrl":"10.1007/s11164-024-05349-8","url":null,"abstract":"<div><p>Developing environmentally benevolent and sustainable approaches is a vital objective of research in any field. By upholding these parameters and strategizing the methodology, herein we report the development of a new heterogeneous nanocatalyst based on Schiff base functionalized Pd(II) complex onto titania-coated magnetic nanoparticles [Pd@SB/Fe<sub>3</sub>O<sub>4</sub>–TiO<sub>2</sub>]. The developed catalytic system is well characterized with various techniques such as FE-SEM, TEM, XPS, XRD, TGA, BET, FTIR, VSM, CHN, EDX, and ICP-AES analysis. The catalytic activity of [Pd@SB/Fe<sub>3</sub>O<sub>4</sub>–TiO<sub>2</sub>] for the Suzuki coupling reaction to synthesize biaryls and for the hydrogenation reaction of aromatic nitro compounds to synthesize aromatic amines under sustainable reaction conditions was tested which revealed excellent results. Pd@SB/Fe<sub>3</sub>O<sub>4</sub>–TiO<sub>2</sub> showed remarkably higher activity than the homogeneous PdCl<sub>2</sub> and Pd(OAc)<sub>2</sub>, which might be due to the presence of electronic synergism between support and Pd. Schiff base functionalization provides excellent support to the palladium as leaching of the metal was not observed. The magnetic core of the catalyst ascertains its easy recoverability, thereby maintaining the sustainability of the reaction. The magnetic catalyst was easily separable with the help of an external magnet and showed very good recyclability for up to six cycles with no appreciable loss in catalytic efficiency. Furthermore, the reported catalyst remains unchanged even after six consecutive runs as established by the FTIR, XPS, and XRD analysis of the recovered catalyst.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 9","pages":"4249 - 4274"},"PeriodicalIF":2.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ecofriendly and efficient approach for three-component synthesis of benzothiazoles: research on catalytic application of Fe3O4@DOP-Amide/Imid-CuCl2 nanocomposite 苯并噻唑三组分合成的环保高效方法:Fe3O4@DOP-Amide/Imid-CuCl2 纳米复合材料的催化应用研究
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-20 DOI: 10.1007/s11164-024-05347-w
Shan Dang, Yaping Hu, Shasha Zhai, Li Yan Zhang
{"title":"An ecofriendly and efficient approach for three-component synthesis of benzothiazoles: research on catalytic application of Fe3O4@DOP-Amide/Imid-CuCl2 nanocomposite","authors":"Shan Dang,&nbsp;Yaping Hu,&nbsp;Shasha Zhai,&nbsp;Li Yan Zhang","doi":"10.1007/s11164-024-05347-w","DOIUrl":"10.1007/s11164-024-05347-w","url":null,"abstract":"<div><p>Benzothiazole derivatives have high biological activity potential and are present in many natural and medicinal products. For these reasons, the synthesis of benzothiazoles is very important in organic synthesis. In this synthetic approach, we found that the utilization of Fe<sub>3</sub>O<sub>4</sub>@DOP-Amide/Imid-CuCl<sub>2</sub> nanocomposite in the presence of KOAc in ChCl-Urea as solvent is an eco-friendly and efficient catalytic system for the synthesis of 2-aryl benzothiazoles through one-pot three-component reactions of 2-iodoaniline and aromatic aldehydes with thiourea as sulfur source. Under this catalytic system, a broad spectrum of 2-aryl benzothiazoles were successfully synthesized with high to excellent yields. Compared to the reported catalysts or magnetic nanocatalysts, the Fe<sub>3</sub>O<sub>4</sub>@DOP-Amide/Imid-CuCl<sub>2</sub> nanocatalyst has the following series of features: design of a magnetic ligand through ammonolysis reaction, high magnetic property of the Fe<sub>3</sub>O<sub>4</sub>@DOP-Amide/Imid-CuCl<sub>2</sub> nanocatalyst, high catalytic activity in the synthesis of benzothiazole derivatives, reusability and high stability of the synthesized magnetic catalyst. The SEM, VSM, BET, and ICP-OES techniques revealed that the recovered Fe<sub>3</sub>O<sub>4</sub>@DOP-Amide/Imid-CuCl<sub>2</sub> catalyst (after 8 times) had high stability because the magnetic nature, structure, and surface of the recovered catalyst was similar to the fresh catalyst.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 9","pages":"4275 - 4300"},"PeriodicalIF":2.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NiO@HNTs-SO3H as a new heterogeneous catalyst for the green and efficient one-pot synthesis of 1-(benzothiazolylamino) methyl-2-naphthols and tetrahydrobenzo[b]pyrans NiO@HNTs-SO3H 作为一种新型异相催化剂,用于绿色高效地一步合成 1-(苯并噻唑基氨基)甲基-2-萘酚和四氢苯并[b]吡喃
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-18 DOI: 10.1007/s11164-024-05353-y
Vitisha Vikhe, Akshay Kshirsagar, Bhagwat Uphade, Anil Gadhave
{"title":"NiO@HNTs-SO3H as a new heterogeneous catalyst for the green and efficient one-pot synthesis of 1-(benzothiazolylamino) methyl-2-naphthols and tetrahydrobenzo[b]pyrans","authors":"Vitisha Vikhe,&nbsp;Akshay Kshirsagar,&nbsp;Bhagwat Uphade,&nbsp;Anil Gadhave","doi":"10.1007/s11164-024-05353-y","DOIUrl":"10.1007/s11164-024-05353-y","url":null,"abstract":"<div><p>NiO nanoparticles were assembled on the surface of Halloysite nanotubes, which were subsequently further functionalized by sulfonic acid, to create NiO@HNTs-SO<sub>3</sub>H composite. This composite is employed as a heterogeneous catalyst in the one-pot synthesis of 1-(benzothiazolylamino) methyl-2-naphthols starting from aryl aldehyde, β-naphthol and 2-aminobenzothiazole as well as Tetrahydrobenzo[<i>b</i>]pyrans starting from aldehyde, dimedone and malononitrile. The catalyst was examined using Fourier transform infrared (FT-IR), energy dispersive X-ray (EDX), X-ray diffraction (XRD) pattern, and scanning electron microscopy (SEM) images. The synthesized organic compounds were examined using <sup>1</sup>H NMR and <sup>13</sup>C NMR spectroscopy and mass analysis by HRMS. The most notable benefits of the current work are its straightforward setup, gentle reaction conditions, green solvents, excellent yields, ease of purification, high efficiency, and the use of a recoverable and environmentally friendly catalyst. The easy separation and reusability of NiO@HNTs-SO<sub>3</sub>H catalyst after five runs confirmed the stability and effectiveness of the catalyst.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 9","pages":"4199 - 4227"},"PeriodicalIF":2.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structures, stability and electronic properties of the NH3 adsorbed and embedded NiBm−1Nm (m = 48, 72 and 96) tubular clusters 吸附和嵌入 NH3 的 NiBm-1Nm(m = 48、72 和 96)管状团簇的结构、稳定性和电子特性
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-17 DOI: 10.1007/s11164-024-05341-2
Jia-cong Li, Zhi Li, Zhen Zhao
{"title":"Structures, stability and electronic properties of the NH3 adsorbed and embedded NiBm−1Nm (m = 48, 72 and 96) tubular clusters","authors":"Jia-cong Li,&nbsp;Zhi Li,&nbsp;Zhen Zhao","doi":"10.1007/s11164-024-05341-2","DOIUrl":"10.1007/s11164-024-05341-2","url":null,"abstract":"<div><p>The structures, stability and electronic properties of the Ni-doped boron nitride tubular clusters (NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub>), NH<sub>3</sub> adsorption on the NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub> (NH<sub>3</sub>NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub>) and NH<sub>3</sub> embedded into the NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub> (NH<sub>3</sub>@NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub>) (<i>m</i> = 48, 72 and 96) clusters have been investigated by using density functional theory. The results reveal that the diameters of the NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub> clusters have almost no effect on the NH<sub>3</sub> adsorption. The diameter of the NiB<sub>47</sub>N<sub>48</sub> clusters is small enough to accommodate the NH<sub>3</sub> molecules, and the appropriate diameter of the NiB<sub>71</sub>N<sub>72</sub> clusters occurs to embed the NH<sub>3</sub> molecules. The NH<sub>3</sub> molecules prefer to adsorb on rather than embed into the NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub> clusters. The charge transfer between the NH<sub>3</sub> molecules and the NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub> clusters is limit, in the range of 0.002–0.221 |<i>e</i>|. The adsorption between the NH<sub>3</sub> molecules and the NiB<sub><i>m</i>−1</sub>N<sub><i>m</i></sub> clusters is chemical process. In a word, the curvature effects of the Ni-doped boron nitride nanotubes with various diameters on NH<sub>3</sub> adsorption are restrict.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 8","pages":"3963 - 3980"},"PeriodicalIF":2.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of novel bi-heteroatom functionalized hyper-crosslinked porous polymers with efficient adsorption of methylene blue and methyl orange 新型双杂原子官能化超交联多孔聚合物的简易合成及其对亚甲基蓝和甲基橙的高效吸附作用
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-17 DOI: 10.1007/s11164-024-05346-x
Xiaolei Fu, Yan He, Zhulei Guo, Mingfan Chen, Wenlong Du, Yuqin Zeng, Dingzhong Yuan, Bing Na
{"title":"Facile synthesis of novel bi-heteroatom functionalized hyper-crosslinked porous polymers with efficient adsorption of methylene blue and methyl orange","authors":"Xiaolei Fu,&nbsp;Yan He,&nbsp;Zhulei Guo,&nbsp;Mingfan Chen,&nbsp;Wenlong Du,&nbsp;Yuqin Zeng,&nbsp;Dingzhong Yuan,&nbsp;Bing Na","doi":"10.1007/s11164-024-05346-x","DOIUrl":"10.1007/s11164-024-05346-x","url":null,"abstract":"<div><p>In this work, we designed and synthesized two novel bi-heteroatom functionalized hyper-crosslinked porous polymers (HCP-CT and HCP-CF) through a simple one-step Friedel–Crafts alkylation reaction. The resulted polymers N/S bi-heteroatom functionalized polymer HCP-CT and N/O bi-heteroatom functionalized polymer HCP-CF both have good adsorption property for organic dyes such as methyl orange (MO) and methylene blue (MB) in aqueous solution due to its rich pore structure, high specific surface area and rich-heteroatoms of pore surface. It is worth mentioned that the maximum adsorption capacity (<i>q</i><sub>max</sub>) of cationic dye MB by the porous polymer HCP-CT at room temperature was reached up to 1571.46 mg/g, which is much higher than that of most reported porous materials. Furthermore, the adsorption capacity of HCP-CT for the cationic dye MB was more than seven times that of the anionic dye MO (<i>q</i><sub>max</sub> = 212.77 mg/g). Also, the polymer HCP-CF for the MB adsorption capacity (<i>q</i><sub>max</sub> = 352.11 mg/g) was more than twice higher than that of anionic dye MO (<i>q</i><sub>max</sub> = 131.75 mg/g). The above trends may be because of the stronger electrostatic interaction between the negatively charged N-S/O bi-heteroatom of HCP-CT and HCP-CF with the cationic dye MB than that of MO. In addition, the removal percentage of polymers HCP-CT and HCP-CF still remained above 80% after five adsorption–desorption cycles. Hence, this work may provide a convenient synthetic route to develop a novel hyper-crosslinked polymer with high capacity for the entrapment of dyes from aqueous solution.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 9","pages":"4351 - 4365"},"PeriodicalIF":2.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the versatility of 5-sulfosalicylic acid dihydrate as catalyst in 3-pyrrolin-2-one Synthesis 探索 5-磺基水杨酸二水合物作为 3-吡咯啉-2-酮合成催化剂的多功能性
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-16 DOI: 10.1007/s11164-024-05348-9
Dhananjay D. Gadge, Pramod S. Kulkarni
{"title":"Exploring the versatility of 5-sulfosalicylic acid dihydrate as catalyst in 3-pyrrolin-2-one Synthesis","authors":"Dhananjay D. Gadge,&nbsp;Pramod S. Kulkarni","doi":"10.1007/s11164-024-05348-9","DOIUrl":"10.1007/s11164-024-05348-9","url":null,"abstract":"<div><p>We have developed a one-pot, four-component synthetic approach utilizing 5-sulfosalicylic acid dihydrate (5-SSA.2H<sub>2</sub>O) as an organocatalyst, enabling the synthesis of polyfunctional 3-pyrrolin-2-one molecules by employing dialkylacetylenedicarboxylate, amines, and either formaldehyde or aromatic aldehydes at room temperature. This approach presents numerous notable benefits such as shorter reaction time, simple and eco-friendly procedure, excellent yield, broad applicability across various substrates, and the use of a cost-effective, easily accessible and biodegradable catalyst. The structures of the 3-pyrrolin-2-one molecules were confirmed using techniques such as FTIR, <sup>1</sup>HNMR, <sup>13</sup>CNMR and HRMS. Overall, this study demonstrates a promising method for producing environmentally friendly polyfunctional 3-pyrrolin-2-one efficiently and smoothly at ambient temperature.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 8","pages":"3785 - 3801"},"PeriodicalIF":2.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoporous Cu2O–CuO/O–g-C3N4 nanocomposite with enhanced peroxidase-like activity for the colorimetric H2O2 sensing 具有增强过氧化物酶样活性的介孔 Cu2O-CuO/O-g-C3N4 纳米复合材料,用于比色 H2O2 传感
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-15 DOI: 10.1007/s11164-024-05333-2
Shemeena Mullakkattuthodi, Binitha N. Narayanan
{"title":"Mesoporous Cu2O–CuO/O–g-C3N4 nanocomposite with enhanced peroxidase-like activity for the colorimetric H2O2 sensing","authors":"Shemeena Mullakkattuthodi,&nbsp;Binitha N. Narayanan","doi":"10.1007/s11164-024-05333-2","DOIUrl":"10.1007/s11164-024-05333-2","url":null,"abstract":"<div><p>Herein, Cu<sub>2</sub>O–CuO incorporated oxygen-doped g-C<sub>3</sub>N<sub>4</sub> has been utilized for the colorimetric sensing of H<sub>2</sub>O<sub>2</sub> by the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The material characterization studies via XPS, XRD, FTIR spectroscopy etc. proved the presence of both Cu<sub>2</sub>O and CuO as well as the doping of oxygen on g-C<sub>3</sub>N<sub>4</sub>. The use of citric acid in the preparation led to a mesoporous architecture together with oxygen doping to g-C<sub>3</sub>N<sub>4</sub>. The high peroxidase-like activity of the present Cu-incorporated exfoliated g-C<sub>3</sub>N<sub>4</sub> nanoenzyme aroused from the improved features such as smaller band gap, porous nature, oxygen doping to g-C<sub>3</sub>N<sub>4</sub>, and thus resulted fast electron mobility and transfer. Michaelis–Menten mechanism is used to study the kinetics, where the obtained K<sub>m</sub> and V<sub>max</sub> values are found to be relevant in comparison with the reported studies. From the mechanistic investigation, the reactive oxygen species involved in the TMB oxidation is ascertained as oxygen superoxide radical anion (<sup>•</sup>O<sub>2</sub><sup>−</sup>). The linear range in sensing is 2.5–250 µM with a limit of detection (LOD) of 1 µM H<sub>2</sub>O<sub>2</sub>. The nanoenzyme showed the least amount of interference and a promising reusability in H<sub>2</sub>O<sub>2</sub> sensing.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 8","pages":"4025 - 4047"},"PeriodicalIF":2.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermally synthesized MoS2 NFs toward efficient supercapacitor and fast photocatalytic degradation of MB 水热合成的 MoS2 NFs 可用于高效超级电容器和甲基溴的快速光催化降解
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-13 DOI: 10.1007/s11164-024-05335-0
Pankaj Suthar, Dinesh Patidar
{"title":"Hydrothermally synthesized MoS2 NFs toward efficient supercapacitor and fast photocatalytic degradation of MB","authors":"Pankaj Suthar,&nbsp;Dinesh Patidar","doi":"10.1007/s11164-024-05335-0","DOIUrl":"10.1007/s11164-024-05335-0","url":null,"abstract":"<div><p>MoS<sub>2</sub> stands out as a distinctive material, owing to its two-dimensional structure, with promising potential across various domains notably in energy storage and photocatalysis. In the present work, a pH-assisted hydrothermal approach (one step) has been utilized to synthesize MoS<sub>2</sub> nanoflowers (NFs) using ammonium molybdate and thiourea. Characterization of the prepared MoS<sub>2</sub> NFs was conducted using XRD, FESEM, HRTEM, FTIR, Raman, UV–Vis, PL, BET and XPS techniques. XRD analysis reveals the hexagonal structure of the prepared NFs, while SEM &amp; TEM images confirm the flower-like morphology consisting of many thin petals. Band gap energy determined through the absorption spectrum is 1.9 eV. Notably, the PL spectrum exhibits a strong and broad peak at 688 nm attributed to band-to-band transition indicating multilayer formation of MoS<sub>2</sub> NFs, which is further confirmed by Raman spectroscopy. XPS also confirms the formation of MoS<sub>2</sub> showing Mo<sup>+4</sup> and S<sup>−2</sup> valance states. The specific surface area of MoS<sub>2</sub> NFs is found to be 108.446 m<sup>2</sup> g<sup>−1</sup> that is very high compared to similar materials. Electrochemical properties of MoS<sub>2</sub> NFs were also investigated showing a specific capacitance of 761 F g<sup>−1</sup> at 4 A g<sup>−1</sup> with an energy density of 21 Wh kg<sup>−1</sup> and a power density of 886 Wkg<sup>−1</sup> for the MoS<sub>2</sub> NFs-based electrode. Moreover, photocatalytic degradation of MB using MoS<sub>2</sub> NFs at different weight contents (10, 15, 20 and 25 mg) was explored demonstrating highest 97% degradation of MB within 90 min with 20 mg photocatalyst loading along with 0.04 min<sup>−1</sup> reaction rate. It also shows good reusability for four consecutive cycles. Furthermore, photodegradation mechanism has also been explored.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 8","pages":"3569 - 3595"},"PeriodicalIF":2.8,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of electrochemical depositing and spin coating methods as electrode modification methods in order to ozone production and dye decomposition 比较电化学沉积法和旋涂法作为电极改性方法在臭氧生成和染料分解中的应用
IF 2.8 3区 化学
Research on Chemical Intermediates Pub Date : 2024-07-12 DOI: 10.1007/s11164-024-05344-z
Sudabeh Dalirnasab, Ali Benvidi, Abbas Behjat, Marzieh Dehghan Tezerjani
{"title":"Comparison of electrochemical depositing and spin coating methods as electrode modification methods in order to ozone production and dye decomposition","authors":"Sudabeh Dalirnasab,&nbsp;Ali Benvidi,&nbsp;Abbas Behjat,&nbsp;Marzieh Dehghan Tezerjani","doi":"10.1007/s11164-024-05344-z","DOIUrl":"10.1007/s11164-024-05344-z","url":null,"abstract":"<div><p>In the field of electrochemical ozone production, electrodes need to have exceptional catalytic activity, long-term stability, and cost-effectiveness. In this case, TiO2-NTs/SnO<sub>2</sub>-Sb<sub>2</sub>O<sub>5</sub>-NiO electrodes were fabricated using a combination of anodization, electrochemical deposition, spin coating and annealing techniques. The coating of electrodes was analyzed using EDS, XRD and SEM techniques. According to the obtained cyclic voltammetry (CV) data, the TiO2-NTs/SnO<sub>2</sub>-Sb<sub>2</sub>O<sub>5</sub>-NiO electrode revealed a less positive potential for oxygen evolution compared to other constructed electrodes. The conversion of Ti to Ti-NTs improved the ozone production efficiency and resulted in higher concentrations of water-soluble ozone. To evaluate the performance of the electrodes and the corresponding electrocatalytic activity, a textile dye was used as a pollutant. The most effective modified electrode proved to have an impressive decomposition rate of 96% for the cationic yellow 28 dye within a 60-min timeframe. Furthermore, this modified electrode could substantially remove chemical oxygen demand (COD) of up to 53.6% during 60-min electrolysis.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 8","pages":"4003 - 4023"},"PeriodicalIF":2.8,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信