Wearable technologies最新文献

筛选
英文 中文
A soft, synergy-based robotic glove for grasping assistance. 一种柔软的,基于协同的机器人手套,用于抓取辅助
Wearable technologies Pub Date : 2021-04-20 eCollection Date: 2021-01-01 DOI: 10.1017/wtc.2021.3
Ryan Alicea, Michele Xiloyannis, Domenico Chiaradia, Michele Barsotti, Antonio Frisoli, Lorenzo Masia
{"title":"A soft, synergy-based robotic glove for grasping assistance.","authors":"Ryan Alicea, Michele Xiloyannis, Domenico Chiaradia, Michele Barsotti, Antonio Frisoli, Lorenzo Masia","doi":"10.1017/wtc.2021.3","DOIUrl":"10.1017/wtc.2021.3","url":null,"abstract":"<p><p>This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45798404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of an acceleration-based assistive strategy to control a back-support exoskeleton for manual material handling. 基于加速的辅助策略的评估,以控制背部支撑外骨骼的手动材料处理
IF 3.4
Wearable technologies Pub Date : 2021-01-11 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.8
Maria Lazzaroni, Ali Tabasi, Stefano Toxiri, Darwin G Caldwell, Elena De Momi, Wietse van Dijk, Michiel P de Looze, Idsart Kingma, Jaap H van Dieën, Jesús Ortiz
{"title":"Evaluation of an acceleration-based assistive strategy to control a back-support exoskeleton for manual material handling.","authors":"Maria Lazzaroni, Ali Tabasi, Stefano Toxiri, Darwin G Caldwell, Elena De Momi, Wietse van Dijk, Michiel P de Looze, Idsart Kingma, Jaap H van Dieën, Jesús Ortiz","doi":"10.1017/wtc.2020.8","DOIUrl":"10.1017/wtc.2020.8","url":null,"abstract":"<p><p>To reduce the incidence of occupational musculoskeletal disorders, back-support exoskeletons are being introduced to assist manual material handling activities. Using a device of this type, this study investigates the effects of a new control strategy that uses the angular acceleration of the user's trunk to assist during lifting tasks. To validate this new strategy, its effectiveness was experimentally evaluated relative to the condition without the exoskeleton as well as against existing strategies for comparison. Using the exoskeleton during lifting tasks reduced the peak compression force on the L5S1 disc by up to 16%, with all the control strategies. Substantial differences between the control strategies in the reductions of compression force, lumbar moment and back muscle activation were not observed. However, the new control strategy reduced the movement speed less with respect to the existing strategies. Thanks to improved timing in the assistance in relation to the typical dynamics of the target task, the hindrance to typical movements appeared reduced, thereby promoting intuitiveness and comfort.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43108046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and preliminary evaluation of a flexible exoskeleton to assist with lifting. 设计和初步评估一个灵活的外骨骼,以协助提升
IF 3.4
Wearable technologies Pub Date : 2021-01-11 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.10
S Emily Chang, Taylor Pesek, Timothy R Pote, Joshua Hull, Jack Geissinger, Athulya A Simon, Mohammad Mehdi Alemi, Alan T Asbeck
{"title":"Design and preliminary evaluation of a flexible exoskeleton to assist with lifting.","authors":"S Emily Chang, Taylor Pesek, Timothy R Pote, Joshua Hull, Jack Geissinger, Athulya A Simon, Mohammad Mehdi Alemi, Alan T Asbeck","doi":"10.1017/wtc.2020.10","DOIUrl":"10.1017/wtc.2020.10","url":null,"abstract":"<p><p>We present a passive (unpowered) exoskeleton that assists the back during lifting. Our exoskeleton uses carbon fiber beams as the sole means to store energy and return it to the wearer. To motivate the design, we present general requirements for the design of a lifting exoskeleton, including calculating the required torque to support the torso for people of different weights and heights. We compare a number of methods of energy storage for exoskeletons in terms of mass, volume, hysteresis, and cycle life. We then discuss the design of our exoskeleton, and show how the torso assembly leads to balanced forces. We characterize the energy storage in the exoskeleton and the torque it provides during testing with human subjects. Ten participants performed freestyle, stoop, and squat lifts. Custom image processing software was used to extract the curvature of the carbon fiber beams in the exoskeleton to determine the stored energy. During freestyle lifting, it stores an average of 59.3 J and provides a peak torque of 71.7 Nm.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46569114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of hand functions of spinal cord injury patients with electromyography-driven hand exoskeleton: A feasibility study. 肌电图驱动的手外骨骼改善脊髓损伤患者手功能的可行性研究
IF 3.4
Wearable technologies Pub Date : 2021-01-05 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.9
Youngmok Yun, Youngjin Na, Paria Esmatloo, Sarah Dancausse, Alfredo Serrato, Curtis A Merring, Priyanshu Agarwal, Ashish D Deshpande
{"title":"Improvement of hand functions of spinal cord injury patients with electromyography-driven hand exoskeleton: A feasibility study.","authors":"Youngmok Yun, Youngjin Na, Paria Esmatloo, Sarah Dancausse, Alfredo Serrato, Curtis A Merring, Priyanshu Agarwal, Ashish D Deshpande","doi":"10.1017/wtc.2020.9","DOIUrl":"10.1017/wtc.2020.9","url":null,"abstract":"<p><p>We have developed a one-of-a-kind hand exoskeleton, called Maestro, which can power finger movements of those surviving severe disabilities to complete daily tasks using compliant joints. In this paper, we present results from an electromyography (EMG) control strategy conducted with spinal cord injury (SCI) patients (C5, C6, and C7) in which the subjects completed daily tasks controlling Maestro with EMG signals from their forearm muscles. With its compliant actuation and its degrees of freedom that match the natural finger movements, Maestro is capable of helping the subjects grasp and manipulate a variety of daily objects (more than 15 from a standardized set). To generate control commands for Maestro, an artificial neural network algorithm was implemented along with a probabilistic control approach to classify and deliver four hand poses robustly with three EMG signals measured from the forearm and palm. Increase in the scores of a standardized test, called the Sollerman hand function test, and enhancement in different aspects of grasping such as strength shows feasibility that Maestro can be capable of improving the hand function of SCI subjects.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47319594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct continuous electromyographic control of a powered prosthetic ankle for improved postural control after guided physical training: A case study. 直接连续肌电图控制的动力假肢踝关节改善姿势控制后的指导体育训练:一个案例研究。
Wearable technologies Pub Date : 2021-01-01 Epub Date: 2021-04-12 DOI: 10.1017/wtc.2021.2
Aaron Fleming, Stephanie Huang, Elizabeth Buxton, Frank Hodges, He Helen Huang
{"title":"Direct continuous electromyographic control of a powered prosthetic ankle for improved postural control after guided physical training: A case study.","authors":"Aaron Fleming,&nbsp;Stephanie Huang,&nbsp;Elizabeth Buxton,&nbsp;Frank Hodges,&nbsp;He Helen Huang","doi":"10.1017/wtc.2021.2","DOIUrl":"https://doi.org/10.1017/wtc.2021.2","url":null,"abstract":"<p><p>Despite the promise of powered lower limb prostheses, existing controllers do not assist many daily activities that require continuous control of prosthetic joints according to human states and environments. The objective of this case study was to investigate the feasibility of direct, continuous electromyographic (dEMG) control of a powered ankle prosthesis, combined with physical therapist-guided training, for improved standing postural control in an individual with transtibial amputation. Specifically, EMG signals of the residual antagonistic muscles (i.e. <i>lateral gastrocnemius</i> and <i>tibialis anterior)</i> were used to proportionally drive pneumatical artificial muscles to move a prosthetic ankle. Clinical-based activities were used in the training and evaluation protocol of the control paradigm. We quantified the EMG signals in the bilateral shank muscles as well as measures of postural control and stability. Compared to the participant's daily passive prosthesis, the dEMG-controlled ankle, combined with the training, yielded improved clinical balance scores and reduced compensation from intact joints. Cross-correlation coefficient of bilateral center of pressure excursions, a metric for quantifying standing postural control, increased to .83(±.07) when using dEMG ankle control (<i>passive device:</i> .39(±.29)). We observed synchronized activation of homologous muscles, rapid improvement in performance on the first day of the training for load transfer tasks, and further improvement in performance across training days <i>(p</i> = <i>.006).</i> This case study showed the feasibility of this dEMG control paradigm of a powered prosthetic ankle to assist postural control. This study lays the foundation for future study to extend these results through the inclusion of more participants and activities.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/wtc.2021.2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39425926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke. 脑卒中后可穿戴设备日常步态训练的实时步态度量估计。
Wearable technologies Pub Date : 2021-01-01 Epub Date: 2021-03-25 DOI: 10.1017/wtc.2020.11
Philipp Arens, Christopher Siviy, Jaehyun Bae, Dabin K Choe, Nikos Karavas, Teresa Baker, Terry D Ellis, Louis N Awad, Conor J Walsh
{"title":"Real-time gait metric estimation for everyday gait training with wearable devices in people poststroke.","authors":"Philipp Arens,&nbsp;Christopher Siviy,&nbsp;Jaehyun Bae,&nbsp;Dabin K Choe,&nbsp;Nikos Karavas,&nbsp;Teresa Baker,&nbsp;Terry D Ellis,&nbsp;Louis N Awad,&nbsp;Conor J Walsh","doi":"10.1017/wtc.2020.11","DOIUrl":"https://doi.org/10.1017/wtc.2020.11","url":null,"abstract":"<p><p>Hemiparetic walking after stroke is typically slow, asymmetric, and inefficient, significantly impacting activities of daily living. Extensive research shows that functional, intensive, and task-specific gait training is instrumental for effective gait rehabilitation, characteristics that our group aims to encourage with soft robotic exosuits. However, standard clinical assessments may lack the precision and frequency to detect subtle changes in intervention efficacy during both conventional and exosuit-assisted gait training, potentially impeding targeted therapy regimes. In this paper, we use exosuit-integrated inertial sensors to reconstruct three clinically meaningful gait metrics related to circumduction, foot clearance, and stride length. Our method corrects sensor drift using instantaneous information from both sides of the body. This approach makes our method robust to irregular walking conditions poststroke as well as usable in real-time applications, such as real-time movement monitoring, exosuit assistance control, and biofeedback. We validate our algorithm in eight people poststroke in comparison to lab-based optical motion capture. Mean errors were below 0.2 cm (9.9%) for circumduction, -0.6 cm (-3.5%) for foot clearance, and 3.8 cm (3.6%) for stride length. A single-participant case study shows our technique's promise in daily-living environments by detecting exosuit-induced changes in gait while walking in a busy outdoor plaza.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/wtc.2020.11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39316250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Design, Modeling, and Demonstration of a New Dual-Mode Back-Assist Exosuit with Extension Mechanism. 一种新型带扩展机构的双模背辅助外服的设计、建模与演示。
Wearable technologies Pub Date : 2021-01-01 Epub Date: 2021-03-24 DOI: 10.1017/wtc.2021.1
Erik P Lamers, Karl E Zelik
{"title":"Design, Modeling, and Demonstration of a New Dual-Mode Back-Assist Exosuit with Extension Mechanism.","authors":"Erik P Lamers,&nbsp;Karl E Zelik","doi":"10.1017/wtc.2021.1","DOIUrl":"https://doi.org/10.1017/wtc.2021.1","url":null,"abstract":"<p><p>Occupational exoskeletons and exosuits have been shown to reduce muscle demands and fatigue for physical tasks relevant to a variety of industries (e.g. logistics, construction, manufacturing, military, healthcare). However, adoption of these devices into the workforce has been slowed by practical factors related to comfort, form-factor, weight, and not interfering with movement or posture. We previously introduced an un-motorized, low-profile, dual-mode exosuit comprised of textile and elastic materials to address these adoption barriers. Here we build upon this prior work by introducing an extension mechanism that increases the moment arm of the exosuit while in engaged mode, then collapses in disengaged mode to retain key benefits related to being lightweight, low-profile, and unobstructive. Here we demonstrate both analytically and empirically how this extensible exosuit concept can (i) reduce device-to-body forces (which can improve comfort for some users and situations), or (ii) increase the magnitude of torque assistance about the low back (which may be valuable for heavy-lifting jobs) without increasing shoulder or leg forces relative to the prior form-fitting exosuit. We also introduce a novel mode-switching mechanism, as well as a human-exosuit biomechanical model to elucidate how individual design parameters affect exosuit assistance torque and device-to-body forces. The proof-of-concept prototype, case study, and modeling work provide a foundation for understanding and implementing extensible exosuits for a broad range of applications. We envision promising opportunities to apply this new dual-mode extensible exosuit concept to assist heavy-lifting, to further enhance user comfort, and to address the unique needs of last-mile delivery workers.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/wtc.2021.1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40441232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Exoskeleton kinematic design robustness: An assessment method to account for human variability. 外骨骼运动学设计稳健性:一种考虑人类可变性的评估方法
IF 3.4
Wearable technologies Pub Date : 2020-11-04 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.7
Matteo Sposito, Christian Di Natali, Stefano Toxiri, Darwin G Caldwell, Elena De Momi, Jesús Ortiz
{"title":"Exoskeleton kinematic design robustness: An assessment method to account for human variability.","authors":"Matteo Sposito, Christian Di Natali, Stefano Toxiri, Darwin G Caldwell, Elena De Momi, Jesús Ortiz","doi":"10.1017/wtc.2020.7","DOIUrl":"10.1017/wtc.2020.7","url":null,"abstract":"<p><p>Exoskeletons are wearable devices intended to physically assist one or multiple human joints in executing certain activities. From a mechanical point of view, they are kinematic structures arranged in parallel to the biological joints. In order to allow the users to move while assisted, it is crucial to avoid mobility restrictions introduced by the exoskeleton's kinematics. Passive degrees of freedom and other self-alignment mechanisms are a common option to avoid any restrictions. However, the literature lacks a systematic method to account for large inter- and intra-subject variability in designing and assessing kinematic chains. To this end, we introduce a model-based method to assess the kinematics of exoskeletons by representing restrictions in mobility as disturbances and undesired forces at the anchor points. The method makes use of robotic kinematic tools and generates useful insights to support the design process. Though an application on a back-support exoskeleton designed for lifting tasks is illustrated, the method can describe any type of rigid exoskeleton. A qualitative pilot trial is conducted to assess the kinematic model that proved to predict kinematic configurations associated to rising undesired forces recorded at the anchor points, that give rise to mobility restrictions and discomfort on the users.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42070162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuromechanical force-based control of a powered prosthetic foot. 动力假肢足的神经机械力控制
IF 3.4
Wearable technologies Pub Date : 2020-10-23 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.6
Amirreza Naseri, Martin Grimmer, André Seyfarth, Maziar Ahmad Sharbafi
{"title":"Neuromechanical force-based control of a powered prosthetic foot.","authors":"Amirreza Naseri, Martin Grimmer, André Seyfarth, Maziar Ahmad Sharbafi","doi":"10.1017/wtc.2020.6","DOIUrl":"10.1017/wtc.2020.6","url":null,"abstract":"<p><p>This article presents a novel neuromechanical force-based control strategy called FMCA (force modulated compliant ankle), to control a powered prosthetic foot. FMCA modulates the torque, based on sensory feedback, similar to neuromuscular control approaches. Instead of using a muscle reflex-based approach, FMCA directly exploits the vertical ground reaction force as sensory feedback to modulate the ankle joint impedance. For evaluation, we first demonstrated how FMCA can predict human-like ankle torque for different walking speeds. Second, we implemented the FMCA in a neuromuscular transtibial amputee walking simulation model to validate if the approach can be used to achieve stable walking and to compare the performance to a neuromuscular reflex-based controller that is already used in a powered ankle. Compared to the neuromuscular model-based approach, the FMCA is a simple solution with a sufficient push-off that can provide stable walking. Third, to assess the ability of the FMCA to generate human-like ankle biomechanics during walking at the preferred speed, we implemented this strategy in a powered prosthetic foot and performed experiments with a non-amputee subject. The results confirm that, for this subject, FMCA can be used to mimic the non-amputee reference ankle torque and the reference ankle angle. The findings of this study support the applicability and advantages of a new bioinspired control approach for assisting amputees. Future experiments should investigate the applicability to other walking speeds and the applicability to the target population.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46129687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-powered wearable electronics. 自供电可穿戴电子产品
IF 3.4
Wearable technologies Pub Date : 2020-10-13 eCollection Date: 2020-01-01 DOI: 10.1017/wtc.2020.3
Puchuan Tan, Yang Zou, Yubo Fan, Zhou Li
{"title":"Self-powered wearable electronics.","authors":"Puchuan Tan, Yang Zou, Yubo Fan, Zhou Li","doi":"10.1017/wtc.2020.3","DOIUrl":"10.1017/wtc.2020.3","url":null,"abstract":"<p><p>Wearable electronics are an essential direction for the future development of smart wearables. Among them, the battery life of wearable electronics is a key technology that limits their development. The proposal of self-powered wearable electronics (SWE) provides a promising solution to the problem of long-term stable working of wearable electronics. This review has made a comprehensive summary and analysis of recent advances on SWE from the perspectives of energy, materials, and ergonomics methods. At the same time, some representative research work was introduced in detail. SWE can be divided into energy type SWE and sensor type SWE according to their working types. Both types of SWE are broadly applied in human-machine interaction, motion information monitoring, diagnostics, and therapy systems. Finally, this article summarizes the existing bottlenecks of SWE, and predicts the future development direction of SWE.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42298295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信