{"title":"Modeling Particle Transport in Astrophysical Outflows and Simulations of Associated Emissions from Hadronic Microquasar Jets","authors":"D. Papadopoulos, O. Kosmas, S. Ganatsios","doi":"10.1155/2022/8146675","DOIUrl":"https://doi.org/10.1155/2022/8146675","url":null,"abstract":"In this work, after improving the formulation of the model on particle transport within astrophysical plasma outflows and constructing the appropriate algorithms, we test the reliability and effectiveness of our method through numerical simulations on well-studied galactic microquasars as the SS 433 and the Cyg X-1 systems. Then, we concentrate on predictions of the associated emissions, focusing on detectable high-energy neutrinos and \u0000 \u0000 γ\u0000 \u0000 -rays originated from the extragalactic M33 X-7 system, which is an X-ray binary discovered in 2006, located in the neighboring galaxy Messier 33, and has not yet been modeled in detail. The particle and radiation energy distributions, produced from magnetized hadronic astrophysical jets in the context of our method, are assumed to originate from decay and scattering processes taking place among the secondary particles created when hot (relativistic) protons of the jet scatter on thermal (cold) ones (p-p interaction mechanism inside the jet). These distributions are computed by solving the system of coupled integrodifferential transport equations of multiparticle processes (reactions chain) following the inelastic proton-proton (p-p) collisions. For the detection of such high-energy neutrinos as well as multiwavelength (radio, X-ray, and gamma-ray) emissions, extremely sensitive space telescopes and other \u0000 \u0000 γ\u0000 \u0000 -ray and neutrino detection instruments are in operation or have been designed like the CTA, IceCube, ANTARES, KM3NeT, and IceCube-Gen-2.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44928547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supervariable and BRST Approaches to a Reparameterization Invariant Nonrelativistic System","authors":"A. Rao, A. Tripathi, R. Malik","doi":"10.1155/2021/5593434.","DOIUrl":"https://doi.org/10.1155/2021/5593434.","url":null,"abstract":"<jats:p>We exploit the theoretical strength of the supervariable and Becchi-Rouet-Stora-Tyutin (BRST) formalisms to derive the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry transformations for the reparameterization invariant model of a nonrelativistic (NR) free particle whose space <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mi>x</mi>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula> and time <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula> variables are a function of an evolution parameter <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mi>τ</mi>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula>. The infinitesimal reparameterization (i.e., 1D diffeomorphism) symmetry transformation of our theory is defined w.r.t. this evolution parameter <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mi>τ</mi>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula>. We apply the modified Bonora-Tonin (BT) supervariable approach (MBTSA) as well as the (anti)chiral supervariable approach (ACSA) to BRST formalism to discuss various aspects of our present system. For this purpose, our 1D ordinary theory (parameterized by <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\u0000 <mi>τ</mi>\u0000 </math>\u0000 </jats:inline-formula>) is generalized onto a <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula>-dimensional supermanifold which is characterized by the sup","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46204324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculation of Binding Energy and Wave Function for Exotic Hidden-Charm Pentaquark","authors":"F. Sharahi, M. Monemzadeh","doi":"10.1155/2021/2861214","DOIUrl":"https://doi.org/10.1155/2021/2861214","url":null,"abstract":"<jats:p>In this study, pentaquark <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\u0000 <msub>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mfenced open=\"(\" close=\")\">\u0000 <mrow>\u0000 <mn>4380</mn>\u0000 </mrow>\u0000 </mfenced>\u0000 </math>\u0000 </jats:inline-formula> composed of a baryon <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\u0000 <msub>\u0000 <mrow>\u0000 <mi>Σ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 </msub>\u0000 </math>\u0000 </jats:inline-formula>, and a <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\u0000 <msup>\u0000 <mrow>\u0000 <mover accent=\"false\">\u0000 <mrow>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>¯</mo>\u0000 </mrow>\u0000 </mover>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>∗</mo>\u0000 </mrow>\u0000 </msup>\u0000 </math>\u0000 </jats:inline-formula> meson is considered. Pentaquark is as a bound state of two-body systems composed of a baryon and a meson. The calculated potential will be expanded and replaced in the Schrödinger equation until tenth sentences of expansion. Solving the Schrödinger equation with the expanded potential of Pentaquark leads to an analytically complete approach. As a consequence, the binding energy <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\u0000 <msub>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 </mrow>\u0000 </msub>\u0000 </math>\u0000 </jats:inline-formula> of pentaquark <jats:inline-formula>\u0000 <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\u0000 <msub>\u0000 <mrow>\u0000 <mi>P</mi>\u0000 ","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"2021 1","pages":"1-6"},"PeriodicalIF":1.7,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41928167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bianchi Type-\u0000 I\u0000 Bulk Viscosity with a DE Cosmological Model","authors":"Daba Meshesha Gusu","doi":"10.1155/2020/4015426","DOIUrl":"https://doi.org/10.1155/2020/4015426","url":null,"abstract":"The finding article presents Bianchi type- universe in the presence of bulk viscous and DE fluid nature of a cosmological model. The solutions of field equations were obtained by assuming hybrid expansion law. The physical significance of the obtained findings illustrates the dominance of bulk viscosity in early and dominance of dark energy fluid emergences in late. This leads to indicate the presence of bulk viscosity nature more effective in early time rather than late times, and also, it shows the dominance of dark energy in late times which grants the current observational result of the universe. Certain physical and geometrical properties of the model are also discussed.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"2020 1","pages":"1-10"},"PeriodicalIF":1.7,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64750992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}