{"title":"Study of Proton, Deuteron, and Triton at 54.4 GeV","authors":"M. Waqas, G. Peng","doi":"10.1155/2021/6674470","DOIUrl":null,"url":null,"abstract":"Transverse momentum spectra of proton, deuteron, and triton in gold-gold (Au-Au) collisions at 54.4 GeV are analyzed in different centrality bins by the blast wave model with Tsallis statistics. The model results are approximately in agreement with the experimental data measured by STAR Collaboration in special transverse momentum ranges. We extracted the kinetic freeze-out temperature, transverse flow velocity, and freeze-out volume from the transverse momentum spectra of the particles. It is observed that the kinetic freeze-out temperature is increasing from the central to peripheral collisions. However, the transverse flow velocity and freeze-out volume decrease from the central to peripheral collisions. The present work reveals the mass dependent kinetic freeze-out scenario and volume differential freeze-out scenario in collisions at STAR Collaboration. In addition, parameter characterizes the degree of nonequilibrium of the produced system, and it increases from the central to peripheral collisions and increases with mass .","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"2021 1","pages":"1-9"},"PeriodicalIF":1.5000,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6674470","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 11
Abstract
Transverse momentum spectra of proton, deuteron, and triton in gold-gold (Au-Au) collisions at 54.4 GeV are analyzed in different centrality bins by the blast wave model with Tsallis statistics. The model results are approximately in agreement with the experimental data measured by STAR Collaboration in special transverse momentum ranges. We extracted the kinetic freeze-out temperature, transverse flow velocity, and freeze-out volume from the transverse momentum spectra of the particles. It is observed that the kinetic freeze-out temperature is increasing from the central to peripheral collisions. However, the transverse flow velocity and freeze-out volume decrease from the central to peripheral collisions. The present work reveals the mass dependent kinetic freeze-out scenario and volume differential freeze-out scenario in collisions at STAR Collaboration. In addition, parameter characterizes the degree of nonequilibrium of the produced system, and it increases from the central to peripheral collisions and increases with mass .
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.