{"title":"离散变量表示(DVR)方法的Charmonium性质","authors":"Bhaghyesh A.","doi":"10.1155/2021/9991152","DOIUrl":null,"url":null,"abstract":"The Schrödinger equation is solved numerically for charmonium using the discrete variable representation (DVR) method. The Hamiltonian matrix is constructed and diagonalized to obtain the eigenvalues and eigenfunctions. Using these eigenvalues and eigenfunctions, spectra and various decay widths are calculated. The obtained results are in good agreement with other numerical methods and with experiments.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Charmonium Properties Using the Discrete Variable Representation (DVR) Method\",\"authors\":\"Bhaghyesh A.\",\"doi\":\"10.1155/2021/9991152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Schrödinger equation is solved numerically for charmonium using the discrete variable representation (DVR) method. The Hamiltonian matrix is constructed and diagonalized to obtain the eigenvalues and eigenfunctions. Using these eigenvalues and eigenfunctions, spectra and various decay widths are calculated. The obtained results are in good agreement with other numerical methods and with experiments.\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9991152\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/9991152","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Charmonium Properties Using the Discrete Variable Representation (DVR) Method
The Schrödinger equation is solved numerically for charmonium using the discrete variable representation (DVR) method. The Hamiltonian matrix is constructed and diagonalized to obtain the eigenvalues and eigenfunctions. Using these eigenvalues and eigenfunctions, spectra and various decay widths are calculated. The obtained results are in good agreement with other numerical methods and with experiments.
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.