Multiscale Entropy Analysis of Gravitational Waves

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS
M. Javaherian, S. Mollaei
{"title":"Multiscale Entropy Analysis of Gravitational Waves","authors":"M. Javaherian, S. Mollaei","doi":"10.1155/2021/6643546","DOIUrl":null,"url":null,"abstract":"The first gravitational-wave (GW) signal was detected in the year 2015 indicating tiny distortions of spacetime caused by accelerated masses. We focused on the GW signals consisting of a peak GW strain of that shows merging pairs of large masses. We applied the generalized entropy known as multiscale entropy to the GW interval time series recorded by different observatories (H1, L1, and V1). This enables us to investigate the behavior of entropies on different scales as a method of studying complexity and organization. We found that the entropies of GW interval data with similar physical properties make the identical manner in different scales. Moreover, the results reveal that the signals collected by each observatory have approximately a similar trend in the multiscale analysis results. According to our findings, although different signals have different values for short-range correlations, the long-range correlations are not noticeable in most of them.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"2021 1","pages":"1-7"},"PeriodicalIF":1.5000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6643546","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 1

Abstract

The first gravitational-wave (GW) signal was detected in the year 2015 indicating tiny distortions of spacetime caused by accelerated masses. We focused on the GW signals consisting of a peak GW strain of that shows merging pairs of large masses. We applied the generalized entropy known as multiscale entropy to the GW interval time series recorded by different observatories (H1, L1, and V1). This enables us to investigate the behavior of entropies on different scales as a method of studying complexity and organization. We found that the entropies of GW interval data with similar physical properties make the identical manner in different scales. Moreover, the results reveal that the signals collected by each observatory have approximately a similar trend in the multiscale analysis results. According to our findings, although different signals have different values for short-range correlations, the long-range correlations are not noticeable in most of them.
引力波的多尺度熵分析
第一个引力波(GW)信号于2015年被探测到,表明质量加速导致的时空微小扭曲。我们重点研究了由峰值GW应变组成的GW信号,该应变显示了大质量对的合并。我们将称为多尺度熵的广义熵应用于不同天文台(H1、L1和V1)记录的GW间隔时间序列。这使我们能够研究熵在不同尺度上的行为,作为研究复杂性和组织性的一种方法。我们发现,具有相似物理性质的GW区间数据的熵在不同尺度上具有相同的方式。此外,结果表明,每个观测站收集的信号在多尺度分析结果中具有近似相似的趋势。根据我们的发现,尽管不同的信号具有不同的短程相关性值,但在大多数信号中,长程相关性并不明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信