Stress biologyPub Date : 2024-01-23DOI: 10.1007/s44154-024-00150-4
Zilong Guo, Shouchuang Wang, Feng Zhang, Denghao Xiang, Jun Yang, Dong Li, Baowei Bai, Mingqiu Dai, Jie Luo, Lizhong Xiong
{"title":"Common and specific genetic basis of metabolite-mediated drought responses in rice.","authors":"Zilong Guo, Shouchuang Wang, Feng Zhang, Denghao Xiang, Jun Yang, Dong Li, Baowei Bai, Mingqiu Dai, Jie Luo, Lizhong Xiong","doi":"10.1007/s44154-024-00150-4","DOIUrl":"10.1007/s44154-024-00150-4","url":null,"abstract":"<p><p>Plants orchestrate drought responses at metabolic level but the genetic basis remains elusive in rice. In this study, 233 drought-responsive metabolites (DRMs) were quantified in a large rice population comprised of 510 diverse accessions at the reproductive stage. Large metabolic variations in drought responses were detected, and little correlation of metabolic levels between drought and normal conditions were observed. Interestingly, most of these DRMs could predict drought resistance in high accuracy. Genome-wide association study revealed 2522 significant association signals for 233 DRMs, and 98% (2471/2522) of the signals were co-localized with the association loci for drought-related phenotypic traits in the same population or the linkage-mapped QTLs for drought resistance in other populations. Totally, 10 candidate genes were efficiently identified for nine DRMs, seven of which harbored cis-eQTLs under drought condition. Based on comparative GWAS of common DRMs in rice and maize, representing irrigated and upland crops, we have identified three pairs of homologous genes associated with three DRMs between the two crops. Among the homologous genes, a transferase gene responsible for metabolic variation of N-feruloylputrescine was confirmed to confer enhanced drought resistance in rice. Our study provides not only genetic architecture of metabolic responses to drought stress in rice but also metabolic data resources to reveal the common and specific metabolite-mediated drought responses in different crops.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fimbrin associated with Pmk1 to regulate the actin assembly during Magnaporthe oryzae hyphal growth and infection.","authors":"Yuan-Bao Li, Ningning Shen, Xianya Deng, Zixuan Liu, Shuai Zhu, Chengyu Liu, Dingzhong Tang, Li-Bo Han","doi":"10.1007/s44154-023-00147-5","DOIUrl":"10.1007/s44154-023-00147-5","url":null,"abstract":"<p><p>The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stress biologyPub Date : 2024-01-16DOI: 10.1007/s44154-023-00142-w
Lu Yu, Yuchen Yang, Xiaolin Qiu, Dianguang Xiong, Chengming Tian
{"title":"The mitogen-activated protein kinase module CcSte11-CcSte7-CcPmk1 regulates pathogenicity via the transcription factor CcSte12 in Cytospora chrysosperma.","authors":"Lu Yu, Yuchen Yang, Xiaolin Qiu, Dianguang Xiong, Chengming Tian","doi":"10.1007/s44154-023-00142-w","DOIUrl":"10.1007/s44154-023-00142-w","url":null,"abstract":"<p><p>The pathogen Cytospora chrysosperma is the causal agent of poplar canker disease and causes considerable economic losses in China. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in mediating cellular responses and Pmk1-MAPKs are indispensable for pathogenic related processes in plant pathogenic fungi. In previous studies, we demonstrated that the CcPmk1 acts as a core regulator of fungal pathogenicity by modulating a small number of master downstream targets, such as CcSte12. In this study, we identified and characterized two upstream components of CcPmk1: MAPKKK CcSte11 and MAPKK CcSte7. Deletion of CcSte11 and CcSte7, resulted in slowed growth, loss of sporulation and virulence, similar to the defects observed in the CcPmk1 deletion mutant. In addition, CcSte11, CcSte7 and CcPmk1 interact with each other, and the upstream adaptor protein CcSte50 interact with CcSte11 and CcSte7. Moreover, we explored the global regulation network of CcSte12 by transcriptional analysis between CcSte12 deletion mutants and wild-type during the simulated infection process. Two hydrolase activity GO terms (GO:0004553 and GO:0016798) and starch and sucrose metabolism (mgr00500) KEGG pathway were significantly enriched in the down-regulated genes of CcSte12 deletion mutants. In addition, a subset of glycosyl hydrolase genes and putative effector genes were significantly down-regulated in the CcSte12 deletion mutant, which might be important for fungal pathogenicity. Especially, CcSte12 bound to the CcSp84 promoter region containing the TGAAACA motif. Moreover, comparison of CcSte12-regulated genes with CcPmk1-regulated genes revealed 116 overlapping regulated genes in both CcSte12 and CcPmk1, including some virulence-associated genes. Taken together, the protein complexes CcSte11-CcSte7-CcPmk1 receive signals transmitted by upstream CcSte50 and transmit signals to downstream CcSte12, which regulates hydrolase, effectors and other genes to promote virulence. Overall, these results indicate that the CcPmk1-MAPK signaling pathway of C. chrysosperma plays a key role in the pathogenicity.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stress biologyPub Date : 2024-01-03DOI: 10.1007/s44154-023-00143-9
Md Motaher Hossain, Farjana Sultana, Sabia Khan, Jannatun Nayeema, Mahabuba Mostafa, Humayra Ferdus, Lam-Son Phan Tran, Mohammad Golam Mostofa
{"title":"Carrageenans as biostimulants and bio-elicitors: plant growth and defense responses.","authors":"Md Motaher Hossain, Farjana Sultana, Sabia Khan, Jannatun Nayeema, Mahabuba Mostafa, Humayra Ferdus, Lam-Son Phan Tran, Mohammad Golam Mostofa","doi":"10.1007/s44154-023-00143-9","DOIUrl":"10.1007/s44154-023-00143-9","url":null,"abstract":"<p><p>In the context of climate change, the need to ensure food security and safety has taken center stage. Chemical fertilizers and pesticides are traditionally used to achieve higher plant productivity and improved plant protection from biotic stresses. However, the widespread use of fertilizers and pesticides has led to significant risks to human health and the environment, which are further compounded by the emissions of greenhouse gases during fertilizer and pesticide production and application, contributing to global warming and climate change. The naturally occurring sulfated linear polysaccharides obtained from edible red seaweeds (Rhodophyta), carrageenans, could offer climate-friendly substitutes for these inputs due to their bi-functional activities. Carrageenans and their derivatives, known as oligo-carrageenans, facilitate plant growth through a multitude of metabolic courses, including chlorophyll metabolism, carbon fixation, photosynthesis, protein synthesis, secondary metabolite generation, and detoxification of reactive oxygen species. In parallel, these compounds suppress pathogens by their direct antimicrobial activities and/or improve plant resilience against pathogens by modulating biochemical changes via salicylate (SA) and/or jasmonate (JA) and ethylene (ET) signaling pathways, resulting in increased production of secondary metabolites, defense-related proteins, and antioxidants. The present review summarizes the usage of carrageenans for increasing plant development and defense responses to pathogenic challenges under climate change. In addition, the current state of knowledge regarding molecular mechanisms and metabolic alterations in plants during carrageenan-stimulated plant growth and plant disease defense responses has been discussed. This evaluation will highlight the potential use of these new biostimulants in increasing agricultural productivity under climate change.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant disease resistance outputs regulated by AP2/ERF transcription factor family.","authors":"Ning Ma, Ping Sun, Zhao-Yang Li, Fu-Jun Zhang, Xiao-Fei Wang, Chun-Xiang You, Chun-Ling Zhang, Zhenlu Zhang","doi":"10.1007/s44154-023-00140-y","DOIUrl":"10.1007/s44154-023-00140-y","url":null,"abstract":"<p><p>Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139076078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stress biologyPub Date : 2024-01-02DOI: 10.1007/s44154-023-00134-w
Hao-Yu Liu, Chuyang Zhu, Miaonan Zhu, Long Yuan, Shicheng Li, Fang Gu, Ping Hu, Shihao Chen, Demin Cai
{"title":"Alternatives to antibiotics in pig production: looking through the lens of immunophysiology.","authors":"Hao-Yu Liu, Chuyang Zhu, Miaonan Zhu, Long Yuan, Shicheng Li, Fang Gu, Ping Hu, Shihao Chen, Demin Cai","doi":"10.1007/s44154-023-00134-w","DOIUrl":"10.1007/s44154-023-00134-w","url":null,"abstract":"<p><p>In the livestock production system, the evolution of porcine gut microecology is consistent with the idea of \"The Hygiene Hypothesis\" in humans. I.e., improved hygiene conditions, reduced exposure to environmental microorganisms in early life, and frequent use of antimicrobial drugs drive immune dysregulation. Meanwhile, the overuse of antibiotics as feed additives for infectious disease prevention and animal growth induces antimicrobial resistance genes in pathogens and spreads related environmental pollutants. It justifies our attempt to review alternatives to antibiotics that can support optimal growth and improve the immunophysiological state of pigs. In the current review, we first described porcine mucosal immunity, followed by discussions of gut microbiota dynamics during the critical weaning period and the impacts brought by antibiotics usage. Evidence of in-feed additives with immuno-modulatory properties highlighting probiotics, prebiotics, and phytobiotics and their cellular and molecular networking are summarized and reviewed. It may provide insights into the immune regulatory mechanisms of antibiotic alternatives and open new avenues for health management in pig production.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139076077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stress biologyPub Date : 2023-12-18DOI: 10.1007/s44154-023-00133-x
Hao He, Mingxuan Jia, Jie Liu, Xueping Zhou, Fangfang Li
{"title":"Roles of RNA m<sup>6</sup>A modifications in plant-virus interactions.","authors":"Hao He, Mingxuan Jia, Jie Liu, Xueping Zhou, Fangfang Li","doi":"10.1007/s44154-023-00133-x","DOIUrl":"https://doi.org/10.1007/s44154-023-00133-x","url":null,"abstract":"<p><p>Viral RNAs have been known to contain N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modifications since the 1970s. The function of these modifications remained unknown until the development of genome-wide methods to map m<sup>6</sup>A residues. Increasing evidence has recently revealed a strong association between m<sup>6</sup>A modifications and plant viral infection. This highlight introduces advances in the roles of RNA m<sup>6</sup>A modifications in plant-virus interactions.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"57"},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foliar application of strigolactones improves the desiccation tolerance, grain yield and water use efficiency in dryland wheat through modulation of non-hydraulic root signals and antioxidant defense.","authors":"Sha Guo, Xiaofei Wei, Baoluo Ma, Yongqing Ma, Zihan Yu, Pufang Li","doi":"10.1007/s44154-023-00127-9","DOIUrl":"10.1007/s44154-023-00127-9","url":null,"abstract":"<p><p>Non-hydraulic root signals (nHRS) are affirmed as a unique positive response to soil drying, and play a crucial role in regulating water use efficiency and yield formation in dryland wheat production. Strigolactones (SLs) can enhance plant drought adaptability. However, the question of whether strigolactones enhance grain yield and water use efficiency by regulating nHRS and antioxidant defense systems in dryland wheat remains unanswered. In this study, pot experiments were conducted to investigate the effects of strigolactones on nHRS, antioxidant defense system, and grain yield and water use efficiency in dryland wheat. The results showed that external application of SLs increased drought-induced abscisic acid (ABA) accumulation and activated an earlier trigger of nHRS at 73.4% field capacity (FC), compared to 68.5% FC in the control group (CK). This phenomenon was mechanically associated with the physiological mediation of SLs. The application of SLs significantly enhanced the activities of leaf antioxidant enzymes, reduced ROS production, and mitigated oxidative damage to lipid membrane. Additionally, root biomass, root length density, and root to shoot ratio were increased under strigolactone treatment. Furthermore, exogenous application of SLs significantly increased grain yield by 34.9% under moderate drought stress. Water use efficiency was also increased by 21.5% and 33.3% under moderate and severe drought conditions respectively, compared to the control group (CK). The results suggested that the application of strigolactones triggered earlier drought-sensing mechanism and improved the antioxidant defense ability, thus enhancing grain yield and water use efficiency in dryland wheat production.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"54"},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current research and future directions of melatonin's role in seed germination.","authors":"Ze Liu, Hengrui Dai, Jinjiang Hao, Rongrong Li, Xiaojun Pu, Miao Guan, Qi Chen","doi":"10.1007/s44154-023-00139-5","DOIUrl":"10.1007/s44154-023-00139-5","url":null,"abstract":"<p><p>Seed germination is a complex process regulated by internal and external factors. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous signaling molecule, playing an important role in regulating seed germination under normal and stressful conditions. In this review, we aim to provide a comprehensive overview on melatonin's effects on seed germination on the basis of existing literature. Under normal conditions, exogenous high levels of melatonin can suppress or delay seed germination, suggesting that melatonin may play a role in maintaining seed dormancy and preventing premature germination. Conversely, under stressful conditions (e.g., high salinity, drought, and extreme temperatures), melatonin has been found to accelerate seed germination. Melatonin can modulate the expression of genes involved in ABA and GA metabolism, thereby influencing the balance of these hormones and affecting the ABA/GA ratio. Melatonin has been shown to modulate ROS accumulation and nutrient mobilization, which can impact the germination process. In conclusion, melatonin can inhibit germination under normal conditions while promoting germination under stressful conditions via regulating the ABA/GA ratios, ROS levels, and metabolic enzyme activity. Further research in this area will deepen our understanding of melatonin's intricate role in seed germination and may contribute to the development of improved seed treatments and agricultural practices.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"53"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stress biologyPub Date : 2023-12-01DOI: 10.1007/s44154-023-00130-0
Muhammad Daniyal Junaid, Z. N. Öztürk, A. Gökçe
{"title":"Exploitation of tolerance to drought stress in carrot (Daucus carota L.): an overview","authors":"Muhammad Daniyal Junaid, Z. N. Öztürk, A. Gökçe","doi":"10.1007/s44154-023-00130-0","DOIUrl":"https://doi.org/10.1007/s44154-023-00130-0","url":null,"abstract":"","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"107 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138608818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}