Liu Yang, Yiming Yang, Junqiang Wei, Tao Wang, Lizhen Li, Zhenxing Shen
{"title":"Insights into the potential pathogenic bacteria and their interactions with meteorology and atmospheric pollution conditions examined during summer and winter in Xi'an, China","authors":"Liu Yang, Yiming Yang, Junqiang Wei, Tao Wang, Lizhen Li, Zhenxing Shen","doi":"10.1080/02786826.2023.2283480","DOIUrl":"https://doi.org/10.1080/02786826.2023.2283480","url":null,"abstract":"Bioaerosols can influence the atmospheric environment and human health. In this study, we investigated the diurnal variations of bioaerosols and the bacterial communities in PM2.5 during summer and...","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"52 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Justin Taylor, Shanna Ratnesar-Shumate, Krystal Pollitt, J. Alex Huffman
{"title":"Proceedings from a special symposium and panel session on the aerosol science of infectious diseases: what we learned and what we still need to know","authors":"Justin Taylor, Shanna Ratnesar-Shumate, Krystal Pollitt, J. Alex Huffman","doi":"10.1080/02786826.2023.2273707","DOIUrl":"https://doi.org/10.1080/02786826.2023.2273707","url":null,"abstract":"","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"2 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong-Le Pan, Aimable Kalume, Leonid Beresnev, Chuji Wang, Sean Kinahan, Danielle N. Rivera, Kevin K. Crown, Joshua Santarpia
{"title":"Rapid bioaerosol detection by measuring circular intensity differential scattering (CIDS) from single flowing through particle","authors":"Yong-Le Pan, Aimable Kalume, Leonid Beresnev, Chuji Wang, Sean Kinahan, Danielle N. Rivera, Kevin K. Crown, Joshua Santarpia","doi":"10.1080/02786826.2023.2279525","DOIUrl":"https://doi.org/10.1080/02786826.2023.2279525","url":null,"abstract":"ABSTRACTWe present an advanced optical method to measure the phase function of circular intensity differential scattering (CIDS), i.e., the normalized Mueller matrix element -S14/S11, from individual single flowing through aerosol particles. Here, a 32-anode photomultiplier tube and its associated electronics, combined with an elliptical reflector, were used to record the scattering phase functions, when a particle were illuminated by a left-handed and a right-handed circular polarization laser beam around the focus of the reflector successively. The new design does not need lock-in amplifier, polarization modulator, and rotating goniometer as the traditional setup. It can reach a particle detection ability with a maximum rate of 50,000 particle/sec. CIDS phase functions from tryptophan particles, polystyrene latex microspheres, aggregates of Escherichia coli, Bacillus subtilis spores, Yersinia rohdei, and bacteriophage MS2 were measured, the results showed that this method has the ability to rapidly discriminate between single bioaerosol and non-bioaerosol particles.Keywords: Circular intensity differential scattering (CIDS)Mueller matrix element -S14/S11 Bioaerosol particlesChiralitySpiralElastic light scatteringScattering phase functionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"319 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135475059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sean M. Kinahan, Gabriel A. Lucero, Matthew S. Tezak, Kevin Hommema, Paul Gemmer, Eric Scribben, Thomas Hawkyard, Don R. Collins, Kevin K. Crown, Joshua L. Santarpia
Áron Varga, Andrew J. Downard, Vanessa Evoen, Konstantinos P. Giapis, Richard C. Flagan, Sossina M. Haile
{"title":"Electrospray synthesis and <i>in-situ</i> sizing of nanoparticulate CsH <sub>2</sub> PO <sub>4</sub>","authors":"Áron Varga, Andrew J. Downard, Vanessa Evoen, Konstantinos P. Giapis, Richard C. Flagan, Sossina M. Haile","doi":"10.1080/02786826.2023.2279528","DOIUrl":"https://doi.org/10.1080/02786826.2023.2279528","url":null,"abstract":"ABSTRACTNanometer-sized particles of the solid acid electrolyte material CsH2PO4 have been prepared by electrospray synthesis. Using a differential mobility analyzer to provide real-time particle-size information, the role of electrospray parameters, such as precursor solution composition, surface tension, and conductivity, sheath gas temperature and flow rate, and solution flow rate, were evaluated. The results are compared with particle sizes calculated using well-established scaling laws. The much smaller sizes of the detected particles in comparison to the sizes expected from the predicted initial droplet sizes suggests that droplets undergo fission along the path towards deposition. In flight fission events may also explain the observed counterintuitive result that aerosol particle size decreases with increasing solvent concentration. The in situ feedback provided by this system enabled rapid identification of solution and process parameters that result in mean particle sizes of ∼ 15 nm, substantially smaller than any prior results.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"2 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135819378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of the Reiss theory for binary homogeneous nucleation of aerosols","authors":"M. S. Veshchunov","doi":"10.1080/02786826.2023.2279527","DOIUrl":"https://doi.org/10.1080/02786826.2023.2279527","url":null,"abstract":"AbstractThe Reiss theory for binary homogeneous nucleation in binary gas mixtures is critically analysed and further developed. Based on the analysis of phase space trajectories in the supercritical zone of the phase transition, carried out within the framework of the theory of two-dimensional dynamical systems and supplemented by the flux matching condition at the boundary of the critical zone, it is shown how the theory should be modified. The proposed modification is equivalent to the earlier modifications by Langer and Stauffer, based on additional trial assumptions (ansatz) for solving the steady state equation for the non-equilibrium size distribution function, but reveals and substantiates the approximation underlying their approach. The extension of the Reiss theory to binary vapours in inert carrier (atmospheric) gases is justified.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"3 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135819207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J. Duke, Harry N. Scott, Anesu J. Kusangaya, Alan Kastengren, Jan Ilavsky, Brandon Sforzo, Benjamin Myatt, Phil Cocks, Stephen Stein, Paul Young, Damon Honnery
{"title":"Volatile propellant droplet evaporation measurements in metered dose inhaler sprays","authors":"Daniel J. Duke, Harry N. Scott, Anesu J. Kusangaya, Alan Kastengren, Jan Ilavsky, Brandon Sforzo, Benjamin Myatt, Phil Cocks, Stephen Stein, Paul Young, Damon Honnery","doi":"10.1080/02786826.2023.2271079","DOIUrl":"https://doi.org/10.1080/02786826.2023.2271079","url":null,"abstract":"ABSTRACTMany aerosol products rely on the rapid vaporization of volatile propellants to produce a fine spray. In the simplest case, these are binary mixtures of propellant and a delivered product which undergo a flash-evaporation process leaving only the less volatile product in the resultant droplet. In more complex applications such as pressurized metered-dose inhalers, the non-propellant component may contain dissolved or suspended drug which precipitates or dries to form a matured particle. The size and morphology of the particles depends strongly on the time-history of the droplet as the propellant evaporates. However, measuring the dynamic evaporation processes which occur in dense sprays containing millions of droplets is challenging. In this paper, we demonstrate a novel application of Ultra Small Angle X-ray Scattering to measure the bulk composition of volatile HFC134a–ethanol sprays, and compare the obtained results with simple evaporation models in a dry nitrogen environment. The data reveal that diffusion-limiting processes inside the droplet are equally important as external convection and mixing-limited factors in determining evaporative timescales.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Additional informationFundingThis work was supported by the Australian Research Council under Grants LP190100938 and DP200102016, and by Kindeva Drug Delivery.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135569816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wonseok Oh, Ryozo Ooka, Hideki Kikumoto, Sihwan Lee
{"title":"Effects of ventilation rate and social distancing on risk of transmission of disease: A numerical study using Eulerian-Lagrangian method","authors":"Wonseok Oh, Ryozo Ooka, Hideki Kikumoto, Sihwan Lee","doi":"10.1080/02786826.2023.2271954","DOIUrl":"https://doi.org/10.1080/02786826.2023.2271954","url":null,"abstract":"ABSTRACTThis study utilized the Eulerian-Lagrangian method to investigate the risk of transmission of disease by tracking particles generated through coughing. The effects of ventilation rates (0.5, 5.0, and 10 ACH) and social distancing (0.9 and 1.8 m) were examined in a small office room using a displacement ventilation system. Numerical simulations considered different particle sizes (1, 5, 10, 20, 40, and 80 μm) to understand particle behavior and transmission routes. The airflow resulting from human coughing was validated with experimental data. Results showed that at a social distance of 0.9 m, increasing the ventilation rate led to a higher fraction of particles directly inhaled by susceptible individuals, potentially causing droplet and airborne transmission. However, maintaining a social distance of 1.8 m and a ventilation rate of 10 ACH significantly reduced the fraction of inhaled particles. Larger particles tended to deposit on floors and surfaces, while smaller particles remained suspended in the air. Higher ventilation rates increased particle deposition on the body surface of susceptible individuals, whereas increasing social distance reduced particle deposition. These findings highlight the importance of appropriate ventilation rates and social distancing in reducing the risk of infection transmission. Maintaining a social distance of 1.8 m combined with increased ventilation effectively reduced the fraction of inhaled particles. Larger particles were more likely to deposit on surfaces, emphasizing the need for regular disinfection. Understanding the dynamics of infectious particles and implementing effective ventilation and distancing measures can help mitigate the spread of infectious diseases in indoor environments.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis research was supported by JSPS KAKEHI (Grant Number 21K18763).Supplementary informationThe supplementary information includes Appendix A, Appendix B, and Appendix C.Supplementary data for this article is available online at the provided DOI: https://doi.org/10.1080/02786826.2023.2271954.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135888083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahender Singh Rawat, Mehtap Agirsoy, Dinushani Senarathna, Byron D. Erath, Tanvir Ahmed, Sumona Mondal, Andrea R. Ferro
{"title":"Comparing respiratory aerosol emissions between children and adults during sustained phonation","authors":"Mahender Singh Rawat, Mehtap Agirsoy, Dinushani Senarathna, Byron D. Erath, Tanvir Ahmed, Sumona Mondal, Andrea R. Ferro","doi":"10.1080/02786826.2023.2261715","DOIUrl":"https://doi.org/10.1080/02786826.2023.2261715","url":null,"abstract":"AbstractRespiratory aerosols arise due to bronchial fluid film bursting within the pulmonary tract, the vibration of the vocal folds during phonation, and articulation of the tongue/lips/teeth. We expect respiratory aerosol emission rates to be lower in children than adults due to the smaller size of their laryngeal structure, reduced sub-glottal pressure created during speech, and reduced number of alveoli. However, few studies have evaluated respiratory aerosols for children. We recruited 50 participants from three age categories: children aged 6−11 years, children aged 12−18 years, and adults ( >18 years). We investigated particle emissions for three different 5 s sustained vocalizations of /a/ or /pa/ at 262 Hz, as well as for running speech and breathing. The particle generation rate ranged from 0 to 488 particles/s. Children aged 6−11 years produced fewer particles (mean 12 ± SD 9 particles/s) than children aged 12−18 years (23 ± 19 particles/s) and adults (70 ± 73 particles/s). Taking a deep breath before vocalizing /a/ resulted in higher aerosol emission rates than the baseline case. The particle number size distributions for all vocalizations and age groups consistently showed two modes at ≈0.6 μm and ≈2 μm. Children had a slightly smaller primary mode location and larger secondary mode location than adults. Superemitters (statistical outliers) were found in all groups. Experiments repeated over time revealed large intrapersonal variability indicating additional variables (e.g., environmental, physiological, behavioral) may significantly influence emission rates. The lower respiratory aerosol emission rates for children indicate a need to consider population demographics when predicting airborne disease transmission risks.KEYWORDS: airborne particlesrespiratory emissionCOVID-19aerosolsbioaerosolstransmissionsuperemitterDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. Additional informationFundingThis work was supported by the National Science Foundation [CBET:2029548] and the Clarkson University COVID-19 Special Solicitation.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felipe A. Rivera-Adorno, Jay M. Tomlin, Matthew Fraund, Erick Morgan, Michael Laskin, Ryan Moffet, Alexander Laskin
{"title":"Estimating Viscosity of Individual Substrate-Deposited Particles from Measurements of Their Height-to-Width Ratios","authors":"Felipe A. Rivera-Adorno, Jay M. Tomlin, Matthew Fraund, Erick Morgan, Michael Laskin, Ryan Moffet, Alexander Laskin","doi":"10.1080/02786826.2023.2270503","DOIUrl":"https://doi.org/10.1080/02786826.2023.2270503","url":null,"abstract":"AbstractAirborne particles alter the radiative forcing of climate and have further consequences on air visibility, atmospheric chemistry, and human health. Recent studies reported the existence of highly viscous semi-solid and even solid amorphous organic aerosol (OA) particles. Particle viscosity has an impact on the heterogeneous chemistry, gas-particle partitioning, and ice nucleation properties. Consequently, variations in particle viscosity must be considered when predicting the atmospheric impact of OA. Here we use scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM) to estimate the viscosity of individual particles deposited on substrates based on their characteristic height-to-width ratios, which are affected by changes in morphology upon deposition. The height-to-width ratios obtained from SEM and STXM exhibit a strong correlation, demonstrating that both imaging approaches can be applied separately for viscosity assessment of the substrate-deposited particles. While these metrics are largely qualitative, this method enables rapid assessment of particle viscosity ranges, distinguishing between semi-solid (>1010 Pa·s), viscous (104-108 Pa·s), and liquid (10°-101 Pa·s) particles within ensembles of ambient particles collected for microscopy studies.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis work was supported by the U. S. Department of Energy’s (DOE) Atmospheric System Research program, Office of Biological and Environmental Research (OBER), award DE-SC0021977. The SEM imaging for this project was performed at the Life Science Microscope Facility at Purdue University. The STXM imaging was performed at beamline 5.3.2.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. We thank Mr. Mark Carlsen, instrumentation specialist from Purdue’s Jonathan Amy Facility for Chemical Instrumentation, for assembling the drying system used for particle generation and collection.Author contributionsF.R. and A.L. devised the project. F.R., J.T., M.F., R.M. conducted STXM measurements. F. R. and E.M. conducted laboratory experiments, collected samples of particle standards, performed SEM measurements, analyzed and integrated all datasets. M.L. provided geometry derivations. F.R. and A.L. wrote the manuscript with contributions from all coauthors. The authors report there are no competing interests to declare.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136079766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}