{"title":"气溶胶二元均匀成核的Reiss理论的发展","authors":"M. S. Veshchunov","doi":"10.1080/02786826.2023.2279527","DOIUrl":null,"url":null,"abstract":"AbstractThe Reiss theory for binary homogeneous nucleation in binary gas mixtures is critically analysed and further developed. Based on the analysis of phase space trajectories in the supercritical zone of the phase transition, carried out within the framework of the theory of two-dimensional dynamical systems and supplemented by the flux matching condition at the boundary of the critical zone, it is shown how the theory should be modified. The proposed modification is equivalent to the earlier modifications by Langer and Stauffer, based on additional trial assumptions (ansatz) for solving the steady state equation for the non-equilibrium size distribution function, but reveals and substantiates the approximation underlying their approach. The extension of the Reiss theory to binary vapours in inert carrier (atmospheric) gases is justified.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"3 7","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the Reiss theory for binary homogeneous nucleation of aerosols\",\"authors\":\"M. S. Veshchunov\",\"doi\":\"10.1080/02786826.2023.2279527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe Reiss theory for binary homogeneous nucleation in binary gas mixtures is critically analysed and further developed. Based on the analysis of phase space trajectories in the supercritical zone of the phase transition, carried out within the framework of the theory of two-dimensional dynamical systems and supplemented by the flux matching condition at the boundary of the critical zone, it is shown how the theory should be modified. The proposed modification is equivalent to the earlier modifications by Langer and Stauffer, based on additional trial assumptions (ansatz) for solving the steady state equation for the non-equilibrium size distribution function, but reveals and substantiates the approximation underlying their approach. The extension of the Reiss theory to binary vapours in inert carrier (atmospheric) gases is justified.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\"3 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2023.2279527\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2279527","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Development of the Reiss theory for binary homogeneous nucleation of aerosols
AbstractThe Reiss theory for binary homogeneous nucleation in binary gas mixtures is critically analysed and further developed. Based on the analysis of phase space trajectories in the supercritical zone of the phase transition, carried out within the framework of the theory of two-dimensional dynamical systems and supplemented by the flux matching condition at the boundary of the critical zone, it is shown how the theory should be modified. The proposed modification is equivalent to the earlier modifications by Langer and Stauffer, based on additional trial assumptions (ansatz) for solving the steady state equation for the non-equilibrium size distribution function, but reveals and substantiates the approximation underlying their approach. The extension of the Reiss theory to binary vapours in inert carrier (atmospheric) gases is justified.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
期刊介绍:
Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation.
Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.