Thomas M Cahill, M Judith Charles, Vincent Y Seaman
{"title":"Development and application of a sensitive method to determine concentrations of acrolein and other carbonyls in ambient air.","authors":"Thomas M Cahill, M Judith Charles, Vincent Y Seaman","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Acrolein, an unsaturated aldehyde, has been identified as one of the most important toxic air pollutants in recent assessments of ambient air quality. Current methods for determining acrolein concentrations, however, suffer from poor sensitivity, selectivity, and reproducibility. The collection and analysis of unsaturated carbonyls, and acrolein in particular, is complicated by unstable derivatives, coelution of similar compounds, and ozone interference. The primary objective of this research was to develop an analytical method to measure acrolein and other volatile carbonyls present in low part-per-trillion concentrations in ambient air samples obtained over short sampling periods. The method we devised uses a mist chamber in which carbonyls from air samples form water-soluble adducts with bisulfite in the chamber solution, effectively trapping the carbonyls in the solution. The mist chamber methodology proved effective, with collection efficiency for acrolein of at least 70% for each mist chamber at a flow rate of approximately 17 L/min. After the sample collection, the carbonyls are liberated from the bisulfite adducts through the addition of hydrogen peroxide, which converts the bisulfite to sulfate, reversing the bisulfite addition reaction. The free carbonyls are then derivatized by o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA*), which stabilizes the analytes and makes them easier to detect by electron-capture negative ionization mass spectrometry (ECNI-MS). The derivatives are then extracted and analyzed by gas chromatography-mass spectrometry (GC-MS). The mist chamber method was applied in a field test to determine the extent of acrolein in ambient air near the Peace Bridge plaza in Buffalo, New York, an area of heavy traffic near a major border crossing between the United States and Canada. In addition, XAD-2 adsorbent cartridges coated with 2-(hydroxymethyl)piperidine (2-HMP) according to Occupational Safety and Health Administration (OSHA) Method 52 and passive samplers based on the use of dansylhydrazine (DNSH) were deployed at this location at the same time, which provided the opportunity to compare methods. The mist chamber results showed that the Peace Bridge traffic was clearly a source of acrolein, with an average concentration of 0.26 microg/m3 at a site 152.4 m downwind (northeast) of the plaza. The OSHA cartridges proved to be too insensitive to determine ambient acrolein concentrations. The DNSH passive samplers returned concentrations near the limit of detection; hence the values were a little higher and less consistent than those in the mist chamber results. The optimized mist chamber method was then applied to determine atmospheric acrolein concentrations at three sites in northern California: a site chosen to reflect the hemispheric background, a region dominated by biogenic sources, and an urban environment. The resulting average acrolein concentrations were 0.056, 0.089, and 0.290 microg/m3, respectively, a","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 149","pages":"3-46"},"PeriodicalIF":0.0,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29105665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer L Peel, Mitchell Klein, W Dana Flanders, James A Mulholland, Paige E Tolbert
{"title":"Impact of improved air quality during the 1996 Summer Olympic Games in Atlanta on multiple cardiovascular and respiratory outcomes.","authors":"Jennifer L Peel, Mitchell Klein, W Dana Flanders, James A Mulholland, Paige E Tolbert","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Substantial evidence supports an association between ambient air pollution, especially particulate matter (PM*) and ozone (O3), and acute cardiovascular and respiratory morbidity. There is increasing interest in accountability research to evaluate whether actions taken to reduce air pollution will result in reduced morbidity. This study capitalized on a unique opportunity to evaluate the impact of a local, short-term intervention effort to reduce traffic in Atlanta during the 1996 Summer Olympic Games (July 19-August 4). Air pollutant concentrations both inside and outside of Atlanta were examined during the Olympic period and surrounding periods. Emergency department (ED) visits were examined to evaluate changes in usage patterns. ED visits for respiratory and cardiovascular conditions were examined in relation to the Olympic period using Poisson time-series analysis with adjustment for time trends and meteorologic conditions. O3 concentrations were approximately 30% lower during the Olympic Games compared with the four weeks before and after the Olympic Games (baseline periods); however, we observed similar reductions in O3 concentrations in several other cities in the Southeastern United States. We observed little or no evidence of reduced ED visits during the Olympic Games; the estimates were sensitive to choice of analytic model and to method of adjusting for temporal trends. The meteorologic conditions during the Olympic Games, along with the reductions in O3 observed in various cities not impacted by the Olympic Games, suggest that both meteorologic conditions-and reduced traffic may have played a role in the observed reduction in O3 concentration in Atlanta. Additionally, it is likely that this particular intervention strategy would not be sustainable as a pollution-reduction strategy. This study demonstrates some limitations of conducting retrospective accountability research.</p>","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 148","pages":"3-23; discussion 25-33"},"PeriodicalIF":0.0,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29076022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barbara Zielinska, Shar Samy, Jacob D McDonald, JeanClare Seagrave
{"title":"Atmospheric transformation of diesel emissions.","authors":"Barbara Zielinska, Shar Samy, Jacob D McDonald, JeanClare Seagrave","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The hypothesis of this study was that exposing diesel exhaust (DE*) to the atmosphere transforms its composition and toxicity. Our specific aims were (1) to characterize the gas- and particle-phase products of atmospheric transformations of DE under the influence of daylight, ozone (O3), hydroxyl (OH) radicals, and nitrate (NO3) radicals; and (2) to explore the biologic activity of DE before and after the transformations took place. The study was executed with the aid of the EUPHORE (European Photoreactor) outdoor simulation chamber facility in Valencia, Spain. EUPHORE is one of the largest and best-equipped facilities of its kind in the world, allowing investigation of atmospheric transformation processes under realistic ambient conditions (with dilutions in the range of 1:300). DE was generated on-site using a modern light-duty diesel engine and a dynamometer system equipped with a continuous emission-gas analyzer. The engine (a turbocharged, intercooled model with common-rail direct injection) was obtained from the Ford Motor Company. A first series of experiments was carried out in January 2005 (the winter 2005 campaign), a second in May 2005 (the summer 2005 campaign), and a third in May and June 2006 (the summer 2006 campaign). The diesel fuel that was used closely matched the one currently in use in most of the United States (containing 47 ppm sulfur and 15% aromatic compounds). Our experiments examined the effects on the composition of DE aged in the dark with added NO3 radicals and of DE aged in daylight with added OH radicals both with and without added volatile organic compounds (VOCs). In order to remove excess nitrogen oxides (NO(x)), a NO(x) denuder was devised and used to conduct experiments in realistic low-NO(x) conditions in both summer campaigns. A scanning mobility particle sizer was used to determine the particle size and the number and volume concentrations of particulate matter (PM) in the DE. O3, NO(x), and reactive nitrogen oxides (NO(y)) were monitored using chemiluminescence and Fourier transform infrared instruments. At the end of the exposures, samples of particle-associated and semivolatile organic compounds (SVOCs) were collected from the chamber for chemical analysis using an XAD-coated annular denuder followed by a filter and XAD cartridge. (XAD is an adsorbent polystyrene divinylbenzene resin used in sampling cartridges.) Samples for toxicity testing were collected using Teflon filters followed by two XAD cartridges. The chemical analyses included determination of organic carbon (OC), elemental carbon (EC), carbon fractions, inorganic ions (e.g., sulfate and nitrate), and speciated organic compounds (polycyclic aromatic hydrocarbons [PAHs], nitro-PAHs, polar compounds, alkanes, hopanes, and steranes). The toxicity tests were performed with extracts of PM combined with the SVOCs. The biologic activity of these extracts was evaluated in vivo by instilling them into the tracheas of rodents and measuring pulmon","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 147","pages":"5-60"},"PeriodicalIF":0.0,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29077976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael T Borchers, Scott C Wesselkamper, Hitesh Deshmukh, Erin Beckman, Mario Medvedovic, Maureen Sartor, George D Leikauf
{"title":"The role of T cells in the regulation of acrolein-induced pulmonary inflammation and epithelial-cell pathology.","authors":"Michael T Borchers, Scott C Wesselkamper, Hitesh Deshmukh, Erin Beckman, Mario Medvedovic, Maureen Sartor, George D Leikauf","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Exposure to acrolein in the ambient air in urban environments represents a considerable hazard to human health. Acrolein exposure causes airway inflammation, accumulation of monocytes, macrophages, and lymphocytes in the interstitium, mucous-cell metaplasia, and airspace enlargement. Currently, the mechanisms that control these events are unclear, and the relative contribution of T-cell subpopulations to pulmonary pathology after exposure to air toxics is unknown. In this study, we used a mouse model of pulmonary pathology induced by repeated acrolein exposure to examine whether pulmonary lymphocyte subpopulations differentially regulate inflammatory-cell accumulation and epithelial-cell pathology. To examine the role of the lymphocyte subpopulations, we used transgenic mice genetically deficient in either alphabeta T cells or gammadelta T cells and measured changes in several cellular, molecular, and pathologic outcomes associated with repeated inhalation exposure to 2.0 ppm or 0.5 ppm acrolein. To examine the potential functions of the lymphocyte subpopulations, we purified these cells from lung tissue of mice repeatedly exposed to 2.0 ppm acrolein, isolated and amplified the messenger RNA (mRNA*) transcripts, and performed oligonucleotide microarray analysis. Our data demonstrate that alphabeta T cells are primarily responsible for the accumulation of macrophages after acrolein exposure, whereas gammadelta T cells are the primary regulators of epithelial-cell homeostasis after repeated acrolein exposure. These findings are supported by the results of microarray analyses indicating that the two T-cell subpopulations have distinct gene-expression profiles after acrolein exposure. These data provide strong evidence that the T-cell subpopulations in the lung are major determinants of the response to pulmonary toxicant exposure and suggest that it is advantageous to elucidate the effector functions of these cells in the modulation of lung pathophysiology.</p>","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 146","pages":"5-29"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28766129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jack R Harkema, James G Wagner, Norbert E Kaminski, Masako Morishita, Gerald J Keeler, Jacob D McDonald, Edward G Barrett
{"title":"Effects of concentrated ambient particles and diesel engine exhaust on allergic airway disease in Brown Norway rats.","authors":"Jack R Harkema, James G Wagner, Norbert E Kaminski, Masako Morishita, Gerald J Keeler, Jacob D McDonald, Edward G Barrett","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Increased concentrations of airborne fine particulate matter (PM2.5; particulate matter with an aerodynamic diameter < or = 2.5 microm) are associated with increases in emergency room visits and hospitalizations of asthmatic patients. Emissions from local stationary combustion sources (e.g., coal-burning power plants) or mobile motor vehicles (e.g., diesel-powered trucks) have been identified as potential contributors to the development or exacerbation of allergic airway disease. In the present study, a rodent model of allergic airway disease was used to study the effects of concentrated ambient particles (CAPs) or diesel engine exhaust (DEE) on the development of allergic airway disease in rats sensitized to the allergen ovalbumin (OVA). The overall objective of our project was to understand the effects of PM2.5 on the development of OVA-induced allergic airway disease. Our specific aims were to test the following hypotheses: (1) exposure to CAPs during OVA challenge enhances epithelial remodeling of the airway and inflammation in rats previously sensitized to the allergen; and (2) exposure to DEE during OVA sensitization, or during OVA challenge, exacerbates epithelial remodeling of the airway and inflammation in rats. In the DEE studies, Brown Norway (BN) rats were sensitized with three daily intranasal (IN) instillations of 0.5% OVA, and then two weeks later were challenged with IN OVA or saline for 3 consecutive days. Rats were exposed to DEE diluted to mass concentrations of 30 or 300 microg/m3 diesel exhaust particles (DEPs) or to filtered air during either the sensitization or challenge periods. For the CAPs studies, the same OVA sensitization and challenge rat model was used but exposures to Detroit, Michigan, CAPs were limited to the OVA challenge period. Two separate 3-day CAPs exposures were conducted (week 1, high mean mass concentration = 595 microg/m3; week 2, low mean mass concentration = 356 microg/m3) during OVA challenge. In both the DEE and CAPs studies, rats were killed 24 hours after the last OVA challenge, bronchoalveolar lavage fluid (BALF) was collected and analyzed for cellularity and secreted mediators, and lungs and nose were processed for histopathologic examination and morphometric analysis of intraepithelial mucosubstances (IM). The results of our animal inhalation studies in the southwest (SW) Detroit community, an area with elevated ambient PM2.5 concentrations, suggested that, during allergen challenge, exposure to CAPs that were predominantly associated with emissions from combustion sources markedly enhanced the OVA-induced allergic airway disease, which was characterized by an increased infiltration in the lungs of eosinophilic and lymphocytic inflammation, increased IM in conducting airways, and increased concentrations in BALF of mucin-specific proteins and inflammatory cytokines. These findings suggest that urban airborne PM2.5 derived from stationary combustion sources (e.g., refineries, coal-burning","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 145","pages":"5-55"},"PeriodicalIF":0.0,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28751790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Klea Katsouyanni, Jonathan M Samet, H Ross Anderson, Richard Atkinson, Alain Le Tertre, Sylvia Medina, Evangelia Samoli, Giota Touloumi, Richard T Burnett, Daniel Krewski, Timothy Ramsay, Francesca Dominici, Roger D Peng, Joel Schwartz, Antonella Zanobetti
{"title":"Air pollution and health: a European and North American approach (APHENA).","authors":"Klea Katsouyanni, Jonathan M Samet, H Ross Anderson, Richard Atkinson, Alain Le Tertre, Sylvia Medina, Evangelia Samoli, Giota Touloumi, Richard T Burnett, Daniel Krewski, Timothy Ramsay, Francesca Dominici, Roger D Peng, Joel Schwartz, Antonella Zanobetti","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>This report provides the methodology and findings from the project: Air Pollution and Health: a European and North American Approach (APHENA). The principal purpose of the project was to provide an understanding of the degree of consistency among findings of multicity time-series studies on the effects of air pollution on mortality and hospitalization in several North American and European cities. The project included parallel and combined analyses of existing data. The investigators sought to understand how methodological differences might contribute to variation in effect estimates from different studies, to characterize the extent of heterogeneity in effect estimates, and to evaluate determinants of heterogeneity. The APHENA project was based on data collected by three groups of investigators for three earlier studies: (1) Air Pollution and Health: A European Approach (APHEA), which comprised two multicity projects in Europe. (Phase 1 [APHEA1] involving 15 cities, and Phase 2 [APHEA2] involving 32 cities); (2) the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), conducted in the 90 largest U.S. cities; and (3) multicity research on the health effects of air pollution in 12 Canadian cities.</p><p><strong>Methods: </strong>The project involved the initial development of analytic approaches for first-stage and second-stage analyses of the time-series data and the subsequent application of the resulting methods to the time-series data. With regard to the first-stage analysis, the various investigative groups had used conceptually similar approaches to the key issues of controlling for temporal confounding and temperature; however, specific methods differed. Consequently, the investigators needed to establish a standard protocol, but one that would be linked to prior approaches. Based on exploratory analyses and simulation studies, a first-stage analysis protocol was developed that used generalized linear models (GLM) with either penalized splines (PS) or natural splines (NS) to adjust for seasonality, with 3, 8, or 12 degrees of freedom (df) per year and also the number of degrees of freedom chosen by minimizing the partial autocorrelation function (PACF) of the model's residuals. For hospitalization data, the approach for model specification followed that used for mortality, accounting for seasonal patterns, but also, for weekend and vacation effects, and for epidemics of respiratory disease. The data were also analyzed to detect potential thresholds in the concentration-response relationships. The second-stage analysis used pooling approaches and assessed potential effect modification by sociodemographic characteristics and indicators of the pollution mixture across study regions. Specific quality control exercises were also undertaken. Risks were estimated for two pollutants: particulate matter - 10 pm in aerodynamic diameter (PM10) and ozone (O3).</p><p><strong>Results: </strong>The first-stage","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 142","pages":"5-90"},"PeriodicalIF":0.0,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28645289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vernon E Walker, Dale M Walker, Quanxin Meng, Jacob D McDonald, Bobby R Scott, Steven K Seilkop, David J Claffey, Patricia B Upton, Mark W Powley, James A Swenberg, Rogene F Henderson
{"title":"Genotoxicity of 1,3-butadiene and its epoxy intermediates.","authors":"Vernon E Walker, Dale M Walker, Quanxin Meng, Jacob D McDonald, Bobby R Scott, Steven K Seilkop, David J Claffey, Patricia B Upton, Mark W Powley, James A Swenberg, Rogene F Henderson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Current risk assessments of 1,3-butadiene (BD*) are complicated by limited evidence of its carcinogenicity in humans. Hence, there is a critical need to identify early events and factors that account for the heightened sensitivity of mice to BD-induced carcinogenesis and to deter-mine which animal model, mouse or rat, is the more useful surrogate of potency for predicting health effects in BD-exposed humans. HEI sponsored an earlier investigation of mutagenic responses in mice and rats exposed to BD, or to the racemic mixture of 1,2-epoxy-3-butene (BDO) or of 1,2,3,4-diepoxybutane (BDO2; Walker and Meng 2000). In that study, our research team demonstrated (1) that the frequency of mutations in the hypoxanthine-guanine phosphoribosyl transferase (Hprt) gene of splenic T cells from BD-exposed mice and rats could be correlated with the species-related differences in cancer susceptibility; (2) that mutagenic-potency and mutagenic-specificity data from mice and rats exposed to BD or its individual epoxy intermediates could provide useful information about the BD metabolites responsible for mutations in each species; and (3) that our novel approach to measuring the mutagenic potency of a given chemical exposure as the change in Hprt mutant frequencies (Mfs) over time was valuable for estimating species-specific differences in mutagenic responses to BD exposure and for predicting the effect of BD metabolites in each species. To gain additional mode-of-action information that can be used to inform studies of human responses to BD exposure, experiments in the current investigation tested a new set of five hypotheses about species-specific patterns in the mutagenic effects in rodents of exposure to BD and BD metabolites: 1. Repeated BD exposures at low levels that approach the occupational exposure limit for BD workers (set by the U.S. Occupational Safety and Health Administration) are mutagenic in female mice. 2. The differences in mutagenic responses of the Hprt gene to BD in similarly exposed rodents of a given species (reported in various earlier studies) are primarily associated with age-related thymus activity and trafficking of T cells and with sex-related differences in BD metabolism. 3. The mutagenic potency of the stereochemical forms of BD's epoxy intermediates plays a significant role in the species-related mutagenicity of BD. 4. The hydrolysis-detoxification pathway of BD through 1,2-dihydroxy-3-butene (BD-diol) is a major contributor to mutagenicity at high-level BD exposures in mice and rats. 5. Significant and informative species-specific differences in mutation spectra can be identified by examining both large- and small-scale genetic alterations in the Hprt gene of BD-exposed mice and rats. The first four hypotheses were tested by exposing mice and rats to BD, meso-BDO2, or BD-diol and measuring Hprt Mfs as the primary biomarker. For this, we used the T-cell-cloning assay of lymphocytes isolated from the spleens of exposed and contr","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 144","pages":"3-79"},"PeriodicalIF":0.0,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28600391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roy M Harrison, Juana Maria Delgado-Saborit, Stephen J Baker, Noel Aquilina, Claire Meddings, Stuart Harrad, Ian Matthews, Sotiris Vardoulakis, H Ross Anderson
{"title":"Measurement and modeling of exposure to selected air toxics for health effects studies and verification by biomarkers.","authors":"Roy M Harrison, Juana Maria Delgado-Saborit, Stephen J Baker, Noel Aquilina, Claire Meddings, Stuart Harrad, Ian Matthews, Sotiris Vardoulakis, H Ross Anderson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The overall aim of our investigation was to quantify the magnitude and range of individual personal exposures to a variety of air toxics and to develop models for exposure prediction on the basis of time-activity diaries. The specific research goals were (1) to use personal monitoring of non-smokers at a range of residential locations and exposures to non-traffic sources to assess daily exposures to a range of air toxics, especially volatile organic compounds (VOCs) including 1,3-butadiene and particulate polycyclic aromatic hydrocarbons (PAHs); (2) to determine microenvironmental concentrations of the same air toxics, taking account of spatial and temporal variations and hot spots; (3) to optimize a model of personal exposure using microenvironmental concentration data and time-activity diaries and to compare modeled exposures with exposures independently estimated from personal monitoring data; (4) to determine the relationships of urinary biomarkers with the environmental exposures to the corresponding air toxic. Personal exposure measurements were made using an actively pumped personal sampler enclosed in a briefcase. Five 24-hour integrated personal samples were collected from 100 volunteers with a range of exposure patterns for analysis of VOCs and 1,3-butadiene concentrations of ambient air. One 24-hour integrated PAH personal exposure sample was collected by each subject concurrently with 24 hours of the personal sampling for VOCs. During the period when personal exposures were being measured, workplace and home concentrations of the same air toxics were being measured simultaneously, as were seasonal levels in other microenvironments that the subjects visit during their daily activities, including street microenvironments, transport microenvironments, indoor environments, and other home environments. Information about subjects' lifestyles and daily activities were recorded by means of questionnaires and activity diaries. VOCs were collected in tubes packed with the adsorbent resins Tenax GR and Carbotrap, and separate tubes for the collection of 1,3-butadiene were packed with Carbopack B and Carbosieve S-III. After sampling, the tubes were analyzed by means of a thermal desorber interfaced with a gas chromatograph-mass spectrometer (GC-MS). Particle-phase PAHs collected onto a quartz-fiber filter were extracted with solvent, purified, and concentrated before being analyzed with a GC-MS. Urinary biomarkers were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Both the environmental concentrations and personal exposure concentrations measured in this study are lower than those in the majority of earlier published work, which is consistent with the reported application of abatement measures to the control of air toxics emissions. The environmental concentration data clearly demonstrate the influence of traffic sources and meteorologic conditions leading to higher air toxics concentrations in the winter and during","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 143","pages":"3-96; discussion 97-100"},"PeriodicalIF":0.0,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28585265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Krewski, Michael Jerrett, Richard T Burnett, Renjun Ma, Edward Hughes, Yuanli Shi, Michelle C Turner, C Arden Pope, George Thurston, Eugenia E Calle, Michael J Thun, Bernie Beckerman, Pat DeLuca, Norm Finkelstein, Kaz Ito, D K Moore, K Bruce Newbold, Tim Ramsay, Zev Ross, Hwashin Shin, Barbara Tempalski
{"title":"Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.","authors":"Daniel Krewski, Michael Jerrett, Richard T Burnett, Renjun Ma, Edward Hughes, Yuanli Shi, Michelle C Turner, C Arden Pope, George Thurston, Eugenia E Calle, Michael J Thun, Bernie Beckerman, Pat DeLuca, Norm Finkelstein, Kaz Ito, D K Moore, K Bruce Newbold, Tim Ramsay, Zev Ross, Hwashin Shin, Barbara Tempalski","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We conducted an extended follow-up and spatial analysis of the American Cancer Society (ACS) Cancer Prevention Study II (CPS-II) cohort in order to further examine associations between long-term exposure to particulate air pollution and mortality in large U.S. cities. The current study sought to clarify outstanding scientific issues that arose from our earlier HEI-sponsored Reanalysis of the original ACS study data (the Particle Epidemiology Reanalysis Project). Specifically, we examined (1) how ecologic covariates at the community and neighborhood levels might confound and modify the air pollution-mortality association; (2) how spatial autocorrelation and multiple levels of data (e.g., individual and neighborhood) can be taken into account within the random effects Cox model; (3) how using land-use regression to refine measurements of air pollution exposure to the within-city (or intra-urban) scale might affect the size and significance of health effects in the Los Angeles and New York City regions; and (4) what exposure time windows may be most critical to the air pollution-mortality association. The 18 years of follow-up (extended from 7 years in the original study [Pope et al. 1995]) included vital status data for the CPS-II cohort (approximately 1.2 million participants) with multiple cause-of-death codes through December 31, 2000 and more recent exposure data from air pollution monitoring sites for the metropolitan areas. In the Nationwide Analysis, the influence of ecologic covariate data (such as education attainment, housing characteristics, and level of income; data obtained from the 1980 U.S. Census; see Ecologic Covariates sidebar on page 14) on the air pollution-mortality association were examined at the Zip Code area (ZCA) scale, the metropolitan statistical area (MSA) scale, and by the difference between each ZCA value and the MSA value (DIFF). In contrast to previous analyses that did not directly include ecologic covariates at the ZCA scale, risk estimates increased when ecologic covariates were included at all scales. The ecologic covariates exerted their greatest effect on mortality from ischemic heart disease (IHD), which was also the health outcome most strongly related with exposure to PM2.5 (particles 2.5 microm or smaller in aerodynamic diameter), sulfate (SO4(2-)), and sulfur dioxide (SO2), and the only outcome significantly associated with exposure to nitrogen dioxide (NO2). When ecologic covariates were simultaneously included at both the MSA and DIFF levels, the hazard ratio (HR) for mortality from IHD associated with PM2.5 exposure (average concentration for 1999-2000) increased by 7.5% and that associated with SO4(2-) exposure (average concentration for 1990) increased by 12.8%. The two covariates found to exert the greatest confounding influence on the PM2.5-mortality association were the percentage of the population with a grade 12 education and the median household income. Also in the Nationwide Analysis, co","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 140","pages":"5-114; discussion 115-36"},"PeriodicalIF":0.0,"publicationDate":"2009-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28397428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Air pollution effects on ventricular repolarization.","authors":"Robert L Lux, C Arden Pope","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We conducted a retrospective study of a set of previously published electrocardiographic data to investigate the possible direct association between levels of particulate air pollution and changes in ventricular repolarization -- the cardiac electrophysiologic process that manifests itself as the T wave* of the electrocardiogram (ECG) and that is definitively linked to and responsible for increased arrhythmogenesis. The published findings from this data set demonstrated a clear cardiac effect, namely, a reduction in heart rate variability (HRV) parameter values with increased levels of particulate air pollution (Pope et al. 2004), suggesting possible arrhythmogenic effects. Given this positive finding and the well-established sensitivity of cardiac repolarization to physiologic, pharmacologic, and neurologic interventions, and in light of emerging novel tools for assessing repolarization, we hypothesized that high levels of particulate air pollution would alter repolarization independent of changes in heart rate and, consequently, would increase arrhythmogenic risk. The likely mechanism of any deleterious effects on repolarization would be alteration of sodium, calcium, and potassium channels. The channel's structure, function, and kinetics are responsible for generating the cellular action potentials, which, when summed over the entire heart, result in the waves recorded by the ECG. A positive finding would provide evidence that increased levels of air pollution may be directly linked to increases in arrhythmogenic risk and, potentially, sudden cardiac death. The study population consisted of 88 nonsmoking, elderly subjects in whom multiple, continuous, 24-hour, 2-channel ECG recordings were collected, along with blood samples to evaluate inflammatory mechanisms (not pursued in the current study). The concentration of fine particulate matter (PM2.5, particulate matter with an aerodynamic diameter < or = 2.5 microm) in daily samples was measured or estimated and used to trigger recording sessions for days considered to have \"low\" or \"high\" PM2.5 concentrations. Each subject participated in one to five recordings over the study period, and all subjects lived within the greater Salt Lake Valley in Utah. We reanalyzed these recordings using custom software that incorporated a magnitude function of the ECG -- the root mean square of all recorded leads (RMS ECG) -- to determine the following for each beat in the 24-hour recording: cycle length (RR); RR dispersion; the interval between the RMS R- and T-wave peaks (RT), a robust estimate of mean duration of ventricular action potential; the width of the RMS T wave (TW), a robust estimate of the range of repolarization times that relates to repolarization dispersion and arrhythmogenesis; the RMS QT interval (QT) measured from the QRS onset to T-wave offset of the RMS ECG; and the regression slopes of RT versus RR, QT versus RR, and TW versus RR, which provide estimates of so-called repolarization r","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 141","pages":"3-20; discussion 21-8"},"PeriodicalIF":0.0,"publicationDate":"2009-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28364465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}