Uma Rajarathnam, Meena Sehgal, Subramanya Nairy, R C Patnayak, Sunli Kumar Chhabra, Kilnani, K V Santhosh Ragavan
{"title":"Part 2. Time-series study on air pollution and mortality in Delhi.","authors":"Uma Rajarathnam, Meena Sehgal, Subramanya Nairy, R C Patnayak, Sunli Kumar Chhabra, Kilnani, K V Santhosh Ragavan","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>Air pollution concentrations in most of the megacities in India exceed the air quality guidelines recommended by the World Health Organization and may adversely affect human health in these cities. Particulate matter (PM) is the pollutant of concern in many Indian cities, particularly in the capital city of Delhi, In recent years, several actions have been taken to address the growing air pollution problem in Delhi and other Indian cities; however, few studies have been designed to assess the health effects of air pollution in Indian cities. To bridge the gap in scientific knowledge and add evidence to the ongoing studies in other Asian cities, a retrospective time-series study on air pollution and mortality in Delhi was initiated under the HEI Public Health and Air Pollution in Asia (PAPA) program.</p><p><strong>Approach: </strong>The study used retrospective time-series data of air quality and of naturally-occurring deaths recorded in Delhi to identify changes in the daily all-natural-cause mortality rate that could be attributed to changes in air quality. The 3-year study period included the years 2002 through 2004. The methodology involved: (1) collecting data on ambient air quality for major pollutants from all monitoring stations in Delhi; (2) collecting meteorologic data (temperature, humidity, and visibility); (3) collecting daily mortality records from the Registrar of Births and Deaths; (4) statistically analyzing the data using the common protocol for Indian PAPA studies, which included city-specific modifications.</p><p><strong>Results and implications: </strong>The study findings showed that increased concentrations of PM with an aerodynamic diameter < or = 10 microg/m3 (PM10) and of nitrogen dioxide (NO2) were associated with increased all-natural-cause mortality. It was found that every 10-microg/m3 change in PM10 was associated with only a 0.15% increase in total all-natural-cause mortality. When NO2 alone was considered in the model, daily all-natural-cause mortality increased 0.84% for every 10-microg/m3 increase in NO2 concentration. No significant effect was observed for changes in sulfur dioxide (SO2) concentrations. The study provides insight into the link between air pollution and mortality in local populations and contributes information to the existing body of knowledge.</p>","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 157","pages":"47-74"},"PeriodicalIF":0.0,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29919332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric M Fujita, David E Campbell, Barbara Zielinska, William P Arnott, Judith C Chow
{"title":"Concentrations of air toxics in motor vehicle-dominated environments.","authors":"Eric M Fujita, David E Campbell, Barbara Zielinska, William P Arnott, Judith C Chow","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>We at the Desert Research Institute (DRI*) measured volatile organic compounds (VOCs), including several mobile-source air toxics (MSATs), particulate matter with a mass mean aerodynamic diameter < or = 2.5 pm (PM2.5), black carbon (BC), nitrogen oxides (NOx), particulate matter (PM), and carbon monoxide (CO) on highways in Los Angeles County during summer and fall 2004, to characterize the diurnal and seasonal variations in measured concentrations related to volume and mix of traffic. Concentrations of on-road pollutants were then compared to corresponding measurements at fixed monitoring sites. The on-road concentrations of CO and MSATs were higher in the morning under stable atmospheric conditions and during periods of higher traffic volumes. In contrast, BC concentrations, measured as particulate light absorption, were higher on truck routes during the midday sampling periods despite more unstable atmospheric conditions. Compared to the measurements at the three near-road sites, the 1-hour averages of on-road BC concentrations were as much as an order of magnitude higher. The peak 1-minute average concentrations were two orders of magnitude higher for BC and were between two and six times higher for PM2.5 mass. The on-road concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) during the summer were 3.5 +/- 0.7 and 1.2 +/- 0.6 times higher during morning and afternoon commuting periods, respectively, compared to annual average 24-hour concentrations measured at air toxic monitoring network sites. These ratios were higher during the fall, with smaller diurnal differences (4.8 +/- 0.7 and 3.9 +/- 0.6 for morning and afternoon commuting periods, respectively). Ratios similar to those for BTEX were obtained for 1,3-butadiene (BD) and styrene. On-road concentrations of formaldehyde and acetaldehyde were up to two times higher than at air toxics monitoring sites, with fall ratios slightly higher than summer ratios. Chemical mass balance (CMB) receptor model calculations attributed the sum of BTEX almost exclusively to gasoline engine exhaust for on-road samples and all but 5% to 10% of the BTEX at the three near-road sites. CMB analysis attributed 46% to 52% (+/- 7) of the ambient total particulate carbon (TC) at the three near-road sites to diesel exhaust and 10% to 17% (+/- 7) to gasoline exhaust; it attributed about 90% of the ambient elemental carbon (EC) concentrations (measured as refractory carbon using the thermal evolution method) to diesel exhaust. Diesel particulate carbon (DPC) concentrations were estimated by multiplying the mean ratio of TC to EC from the source-dominated ambient samples collected on road on Terminal Island (1.30 +/- 0.28), which is located between the Long Beach and Los Angeles ports, with the measured ambient EC concentrations at the three near-road sites. DPC estimates from EC measurements correlate well with the diesel source contributions calculated with the CMB model. The indication from thes","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 156","pages":"3-77"},"PeriodicalIF":0.0,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40108096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James J Schauer, Brian J Majestic, Rebecca J Sheesley, Martin M Shafer, Jeffrey T Deminter, Mark Mieritz
{"title":"Improved source apportionment and speciation of low-volume particulate matter samples.","authors":"James J Schauer, Brian J Majestic, Rebecca J Sheesley, Martin M Shafer, Jeffrey T Deminter, Mark Mieritz","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>New chemical analysis methods for the characterization of atmospheric particulate matter (PM)* samples were developed and demonstrated in order to expand the number of such methods for use in future health studies involving PM. Three sets of methods were, developed, for the analysis (1) of organic tracer compounds in low-volume personal exposure samples (for source apportionment), (2) of trace metals and other trace elements in low-volume personal exposure samples, and (3) of the speciation of the oxidation states of water-soluble iron (Fe), manganese (Mn), and chromium (Cr) in PM samples. The development of the second set of methods built on previous work by the project team, which had in the past used similar methods in atmospheric source apportionment studies. The principal challenges in adapting these methods to the analysis of personal exposure samples were the improvement of detection limits (DLs) and control of the low-level contamination that can compromise personal exposure samples. A secondary goal of our development efforts was to reduce the cost and complexity of the three sets of methods in order to help facilitate their broader use in future health studies. The goals of the project were achieved, and the ability to integrate the methods into existing health studies was demonstrated by way of conducting two pilot studies. The first study involved analysis of trace elements in size-resolved PM samples that had been collected to represent study subjects' personal exposures along with simultaneous measures of indoor and outdoor PM concentrations. The second study involved analysis of the speciation of organic tracer compounds in personal exposure samples, indoor samples, and outdoor samples in order to understand the diesel PM exposure of study subjects in various job classifications in an occupational setting. Both pilot studies used existing samples from. large multi-year health studies and were intended to demonstrate the feasibility and value of using the new chemical analysis methods to better characterize the personal exposure samples. Analysis of the health data and the broader implications of the exposure assessments were not evaluated as part of the present study, but our pilot-study measurements are expected to contribute to investigators' future analyses in the large multi-year health studies. The methods we developed for the low-cost measurement of the oxidation states of Fe, Mn, and Cr in atmospheric PM samples are extremely sensitive and well suited for use in health studies. To demonstrate the utility of these methods, small-scale studies were conducted to characterize the redox cycling of Fe in PM on the time scale of atmospheric transport from source to personal exposure and to provide preliminary data on the atmospheric concentrations of soluble forms of the target metals in selected urban environments (in order to help focus future research seeking to understand the role of metals in human exposure to PM and its","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 153","pages":"3-75; discussion 77-89"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29745172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan I Levy, Jane E Clougherty, Lisa K Baxter, E Andres Houseman, Christopher J Paciorek
{"title":"Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.","authors":"Jonathan I Levy, Jane E Clougherty, Lisa K Baxter, E Andres Houseman, Christopher J Paciorek","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Previous studies have identified associations between traffic exposures and a variety of adverse health effects, but many of these studies relied on proximity measures rather than measured or modeled concentrations of specific air pollutants, complicating interpretability of the findings. An increasing number of studies have used land-use regression (LUR) or other techniques to model small-scale variability in concentrations of specific air pollutants. However, these studies have generally considered a limited number of pollutants, focused on outdoor concentrations (or indoor concentrations of ambient origin) when indoor concentrations are better proxies for personal exposures, and have not taken full advantage of statistical methods for source apportionment that may have provided insight about the structure of the LUR models and the interpretability of model results. Given these issues, the primary objective of our study was to determine predictors of indoor and outdoor residential concentrations of multiple traffic-related air pollutants within an urban area, based on a combination of central site monitoring data; geographic information system (GIS) covariates reflecting traffic and other outdoor sources; questionnaire data reflecting indoor sources and activities that affect ventilation rates; and factor-analytic methods to better infer source contributions. As part of a prospective birth cohort study assessing asthma etiology in urban Boston, we collected indoor and/or outdoor 3-to-4 day samples of nitrogen dioxide (NO2) and fine particulate matter with an aerodynamic diameter or = 2.5 pm (PM2.5) at 44 residences during multiple seasons of the year from 2003 through 2005. We performed reflectance analysis, x-ray fluorescence spectroscopy (XRF), and high-resolution inductively coupled plasma-mass spectrometry (ICP-MS) on particle filters to estimate the concentrations of elemental carbon (EC), trace elements, and water-soluble metals, respectively. We derived multiple indicators of traffic using Massachusetts Highway Department (MHD) data and traffic counts collected outside the residences where the air monitoring was conducted. We used a standardized questionnaire to collect data on home characteristics and occupant behaviors. Additional housing information was collected through property tax records. Ambient concentrations of pollutants as well as meteorological data were collected from centrally located ambient monitors. We used GIS-based LUR models to explain spatial and temporal variability in residential outdoor concentrations of PM2.5, EC, and NO2. We subsequently derived latent-source factors for residential outdoor concentrations using confirmatory factor analysis constrained to nonnegative loadings. We developed LUR models to determine whether GIS covariates and other predictors explain factor variability and thereby support initial factor interpretations. To evaluate indoor concentrations, we developed physically interpretable ","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 152","pages":"5-80; discussion 81-91"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29745171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chit-Ming Wong, Thuan Quoc Thach, Patsy Yuen Kwan Chau, Eric King Pan Chan, Roger Yat-nork Chung, Chun-Quan Ou, Lin Yang, Joseph Sriyal Malik Peiris, Graham Neil Thomas, Tai-Hing Lam, Tze-Wai Wong, Anthony Johnson Hedley
{"title":"Part 4. Interaction between air pollution and respiratory viruses: time-series study of daily mortality and hospital admissions in Hong Kong.","authors":"Chit-Ming Wong, Thuan Quoc Thach, Patsy Yuen Kwan Chau, Eric King Pan Chan, Roger Yat-nork Chung, Chun-Quan Ou, Lin Yang, Joseph Sriyal Malik Peiris, Graham Neil Thomas, Tai-Hing Lam, Tze-Wai Wong, Anthony Johnson Hedley","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>Populations in Asia are not only at risk of harm to their health through environmental degradation as a result of worsening pollution problems but also constantly threatened by recurring and emerging influenza epidemics and. pandemics. Situated in the area with the world's fastest growing economy and close to hypothetical epicenters of influenza transmission, Hong Kong offers a special opportunity for testing environmental management and public health surveillance in the region. In the Public Health and Air Pollution in Asia (PAPA*) project, the Hong Kong research team assessed the health effects of air pollution and influenza as well as the interaction between them. The team also assessed disparities in the health effects of air pollution between relatively deprived and more affluent areas in Hong Kong. The aim was to provide answers to outstanding research questions relating to the short-term effects of air pollution on mortality and hospital admissions; the health effects of influenza with a view to validating different measures of influenza activity according to virologic data; the confounding effects of influenza on estimates of the health effects of air pollution; the modifying effects of influenza on the health effects of air pollution; and the modifying effects of neighborhood social deprivation on the health effects of air pollution.</p><p><strong>Data: </strong>Data on mortality and hospital admissions for all natural causes, as well as the subcategories of cardiovascular diseases (CVD) and respiratory diseases (RD), were derived from the Hong Kong Census and Statistics Department and the Hospital Authority. Daily concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter with an aerodynamic diameter < or = 10 pm (PM10); and ozone (O3) were derived from eight monitoring stations with hourly data that were at least 75% complete during the study period. Three measures of influenza and respiratory syncytial virus (RSV) activity were derived from positive isolates of specimens in the virology laboratory of Queen Mary Hospital (QMH), the main clinical teaching center at The University of Hong Kong and part of the Hong Kong Hospital Authority network of teaching hospitals: influenza intensity (defined as the weekly proportion of positive isolates of influenza in the total number of specimens received for diagnostic tests); the presence of influenza epidemic (defined as a period when the weekly frequency of these positive isolates is > or = 4% of the annual total number of positive isolates [i.e., twice the expected mean value] in two or more consecutive weeks); and influenza predominance (defined as a period of influenza epidemic when the weekly frequency of RSV was less than 2% for two or more consecutive weeks). The weekly proportion of positive isolates of RSV in total specimens was determined in the same way as for influenza intensity. A social deprivation index (SDI) was defined by ","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 154","pages":"283-362"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29775811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Part 1. A time-series study of ambient air pollution and daily mortality in Shanghai, China.","authors":"Haidong Kan, Bingheng Chen, Naiqing Zhao, Stephanie J London, Guixiang Song, Guohai Chen, Yunhui Zhang, Lili Jiang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Although the relation between outdoor air pollution and daily mortality has been examined in several Chinese cities, there are still a number of key scientific issues to be addressed concerning the health effects of air pollution in China. Given the changes over the past decade in concentrations and sources of air pollution (e.g., the change from one predominant source [coal combustion], which was typical of the twentieth century, to a mix of sources [coal combustion and motor-vehicle emissions]) and transition in China, it is worthwhile to investigate the acute effects of outdoor air pollution on mortality outcomes in the country. We conducted a time-series study to investigate the relation between outdoor air pollution and daily mortality in Shanghai using four years of daily data (2001-2004). This study is a part of the Public Health and Air Pollution in Asia (PAPA) program supported by the Health Effects Institute (HEI). We collected data on daily mortality, air pollution, and weather from the Shanghai Municipal Center of Disease Control and Prevention (SMCDCP), Shanghai Environmental Monitoring Center, and Shanghai Meteorologic Bureau. An independent auditing team assigned by HEI validated all the data. Our statistical analysis followed the Common Protocol of the PAPA program (found at the end of this volume). Briefly, a natural-spline model was used to analyze the mortality, air pollution, and covariate data. We first constructed the basic models for various mortality outcomes excluding variables for air pollution, and used the partial autocorrelation function of the residuals to guide the selection of degrees of freedom for time trend and lag days for the autoregression terms. Thereafter, we introduced the pollutant variables and analyzed their effects on mortality outcomes, including both mortality due to all natural (nonaccidental) causes and cause-specific mortality. We fitted single- and multipollutant models to assess the stability of the effects of the pollutants. For mortality due to all natural causes, we also examined the associations stratified by sex and age. Stratified analyses by education level, used as a measure of socioeconomic status, were conducted as well. In addition to an analysis of the entire study period, the effects of air pollution in just the warm season (from April to September) and cool season (from October to March) were analyzed. We also examined the effects of alternative model specifications--such as lag effects of pollutants and temperature, degrees of freedom for time trend and weather conditions, statistical approaches, and averaging methods for pollutant concentrations-on the estimated effects of air pollution. We found significant associations between the air pollutants--particulate matter 10 pm or less in aerodynamic diameter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) -and daily mortality from all natural causes and from cardiopulmonary diseases. The increased mortality","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 154","pages":"17-78"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29775807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Part 3. Estimating the effects of air pollution on mortality in Bangkok, Thailand.","authors":"Nuntavarn Vichit-Vadakan, Nitaya Vajanapoom, Bart Ostro","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>While the effects of particulate matter (PM*) on mortality have been well documented in North America and Western Europe, considerably less is known about its effects in developing countries in Asia. Existing air pollution data in Bangkok, Thailand, indicate that airborne concentrations of PM < or = 10 pm in aerodynamic diameter (PM10) are as high or higher than those experienced in most cities in North America and Western Europe. At the same time, the demographics, activity patterns, and background health status of the population, as well as the chemical composition of PM, are different in Bangkok. It is important, therefore, to determine whether the effects of PM10 on mortality occurring in this large metropolitan area are similar to those in Western cities. The quality and completeness of Bangkok mortality data have been recently enhanced by the completion of a few mortality studies and through input from monitors currently measuring daily PM10 in Bangkok. In this analysis, we examined the effects of PM10 and several gaseous pollutants on daily mortality for the years 1999 through 2003. Our results suggest strong associations between several different mortality outcomes and levels of PM10 and several of the gaseous pollutants, including nitrogen dioxide (NO2), nitric oxide (NO), and ozone (O3). In many cases, the effect estimates were higher than the approximately 6% per 10 microg/m3 typically reported in Western industrialized nations-based on reviews by the U.S. Environmental Protection Agency (U.S. EPA) and the World Health Organization (WHO) (Anderson et al. 2004). For example, the excess risk (ER) for mortality due to all natural causes was 1.3% (95% confidence interval [CI], 0.8 to 1.7), with higher ERs for cardiovascular and respiratory mortality of 1.9% (95% CI, 0.8 to 3.0) and 1.0% (95% CI, -0.4 to 2.4), respectively. Of particular note, for this warm, tropical city of approximately 6 to 10 million people, is that there is no covariation between pollution and cold weather, with its associated adverse health problems. Multiday averages of PM10 generated even higher effect estimates. Our analysis of age- and disease-specific mortality indicated elevated ERs for young children, especially infants with respiratory illnesses, children less than 5 years of age with lower respiratory infections (LRIs), and people with asthma. Age-restricted analyses showed that the associations between mortality due to all natural causes and PM10 concentration increased with age, with the strongest effects among people aged 75 years and older. However, associations between increases in PM10 concentration and mortality were observed for all of the other age groups. With a few exceptions, relatively similar results were observed for several of the other pollutants-sulfur dioxide (SO2), NO2, O3, and NO, which were highly correlated with PM10. However, many of the effects from gaseous pollutants were attenuated in multipollutant models, while effects from ","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 154","pages":"231-68"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29775809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C M Wong, N Vichit-Vadakan, N Vajanapoom, B Ostro, T Q Thach, P Y K Chau, E K P Chan, R Y N Chung, C Q Ou, L Yang, J S M Peiris, G N Thomas, T H Lam, T W Wong, A J Hedley, H Kan, B Chen, N Zhao, S J London, G Song, G Chen, Y Zhang, L Jiang, Z Qian, Q He, H M Lin, L Kong, D Zhou, S Liang, Z Zhu, D Liao, W Liu, C M Bentley, J Dan, B Wang, N Yang, S Xu, J Gong, H Wei, H Sun, Z Qin
{"title":"Part 5. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality.","authors":"C M Wong, N Vichit-Vadakan, N Vajanapoom, B Ostro, T Q Thach, P Y K Chau, E K P Chan, R Y N Chung, C Q Ou, L Yang, J S M Peiris, G N Thomas, T H Lam, T W Wong, A J Hedley, H Kan, B Chen, N Zhao, S J London, G Song, G Chen, Y Zhang, L Jiang, Z Qian, Q He, H M Lin, L Kong, D Zhou, S Liang, Z Zhu, D Liao, W Liu, C M Bentley, J Dan, B Wang, N Yang, S Xu, J Gong, H Wei, H Sun, Z Qin","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Background: </strong>In recent years, Asia has experienced rapid economic growth and a deteriorating environment caused by the increasing use of fossil fuels. Although the deleterious effects of air pollution from fossil-fuel combustion have been demonstrated in many Western nations, few comparable studies have been conducted in Asia. Time-series studies of daily mortality in Asian cities can contribute important new information to the existing body of knowledge about air pollution and health. Not only can these studies verify important health effects of air pollution in local regions in Asia, they can also help determine the relevance of existing air pollution studies to mortality and morbidity for policymaking and environmental controls. In addition, the studies can help identify factors that might modify associations between air pollution and health effects in various populations and environmental conditions. Collaborative multicity studies in Asia-especially when designed, conducted, and analyzed using a common protocol-will provide more robust air pollution effect estimates for the region as well as relevant, supportable estimates of local adverse health effects needed by environmental and public-health policymakers.</p><p><strong>Specific objectives: </strong>The Public Health and Air Pollution in Asia (PAPA*) project, sponsored by the Health Effects Institute, consisted of four studies designed to assess the effects of air pollution on mortality in four large Asian cities, namely Bangkok, in Thailand, and Hong Kong, Shanghai, and Wuhan, in China. In the PAPA project, a Common Protocol was developed based on methods developed and tested in NMMAPS, APHEA, and time-series studies in the literature to help ensure that the four studies could be compared with each other and with previous studies by following an established protocol. The Common Protocol (found at the end of this volume) is a set of prescriptive instructions developed for the studies and used by the investigators in each city. It is flexible enough to allow for adjustments in methods to optimize the fit of health-effects models to each city's data set. It provides the basis for generating reproducible results in each city and for meta-estimates from combined data. By establishing a common methodology, factors that might influence the differences in results from previous studies can more easily be explored. Administrative support was provided to ensure that the highest quality data were used in the analysis. It is anticipated that the PAPA results will contribute to the international scientific discussion of how to conduct and interpret time-series studies of air pollution and will stimulate the development of high-quality routine systems for recording daily deaths and hospital admissions for time-series analysis.</p><p><strong>Methods: </strong>Mortality data were retrieved from routine databases with underlying causes of death coded using the World Health Organization ","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 154","pages":"377-418"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29775813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.","authors":"Zhengmin Qian, Qingci He, Hung-Mo Lin, Lingli Kong, Dunjin Zhou, Shengwen Liang, Zhichao Zhu, Duanping Liao, Wenshan Liu, Christy M Bentley, Jijun Dan, Beiwei Wang, Niannian Yang, Shuangqing Xu, Jie Gong, Hongming Wei, Huilin Sun, Zudian Qin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. Wuhan is called an \"oven city\" in China because of its extremely hot summers (the average daily temperature in July is 37.2 degrees C and maximum daily temperature often exceeds 40 degrees C). Approximately 4.5 million residents live in the core city area of 201 km2, where air pollution levels are higher and ranges are wider than the levels in most cities studied in the published literature. We obtained daily mean levels of PM10, SO2, and NO2 concentrations from five fixed-site air monitoring stations operated by the Wuhan Environmental Monitoring Center (WEMC). O3 data were obtained from two stations, and 8-hour averages, from 10:00 to 18:00, were used. Daily mortality data were obtained from the Wuhan Centres for Disease Prevention and Control (WCDC) during the study period of July 1, 2000, to June 30, 2004. To achieve the first aim, we used a regression of the logarithm of daily counts of mortality due to all natural causes and cause-specific mortality on the daily mean concentrations of the four pollutants while controlling for weather, temporal factors, and other important covariates with generalized additive models (GAMs). We derived pollutant effect estimations for 0-day, 1-day, 2-day, 3-day, and 4-day lagged exposure levels, and the averages of 0-day and 1-day lags (lag 0-1 day) and of 0-day, 1-day, 2-day, and 3-day lags (lag 0-3 days) before the event of death. In addition, we used individual-level data (e.g., age and sex) to classify subgroups in stratified analyses. Furthermore, we explored the nonlinear shapes (\"thresholds\") of the exposure-response relations. To achieve the second aim, we tested the hypothesis that extremely high temperature modifies the associations between air pollution and daily mortality. We developed three corresponding weather indicators: \"extremely hot,\" \"extremely cold,\" and \"normal temperatures.\" Th","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 154","pages":"91-217"},"PeriodicalIF":0.0,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29775808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debra L Laskin, Gediminas Mainelis, Barbara J Turpin, Kinal J Patel, Vasanthi R Sunil
{"title":"Pulmonary effects of inhaled diesel exhaust in young and old mice: a pilot project.","authors":"Debra L Laskin, Gediminas Mainelis, Barbara J Turpin, Kinal J Patel, Vasanthi R Sunil","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>It is well established that exposure to ambient fine particulate matter (PM), defined as PM < or = 2.5 microm in aerodynamic diameter (PM2.5), is associated with increased cardiovascular morbidity and mortality and that elderly persons are particularly susceptible to these effects. We speculated that the increased susceptibility of elderly persons to PM is due to altered production of inflammatory mediators and antioxidants in the lung. We performed pilot studies in an animal model to test this hypothesis. For these studies we used diesel exhaust (DE), a major component of urban PM, as a model. Two groups of male CB6F1 mice, 2 months and 18 months old, (referred to in this report as young and old mice, respectively) were exposed to DE at 300 or 1000 microg/m3 PM (referred to as low- or high-dose DE, respectively), or to filtered air as a control, for one 3-hour period (single exposure) or for 3 hours on each of three consecutive days (repeated exposure). Mice were killed and bronchoalveolar lavage (BAL) fluid, serum, and lung tissue were collected immediately after exposure (0 hours) and 24 hours after the final exposure. After single or repeated exposure to DE, persistent structural alterations and inflammation were observed in the lungs of old mice. These changes consisted of patchy thickening of alveolar septa and an increase in the number of neutrophils and macrophages in alveolar spaces. In the young mice, in contrast, no major alterations in lung histology were noted. In old but not in young mice, significant increases in messenger RNA (mRNA) expression of the oxidative-stress marker lipocalin 24p3 were also observed. In both young and old mice, exposure to DE was associated with increased expression of tumor necrosis factor alpha (TNF-alpha) mRNA in the lung. However, this response was attenuated in old mice. Exposure to high-dose DE resulted in significant increases in interleukin (IL)-6 and IL-8 mRNA expression in the lungs of old animals; these increases persisted for 24 hours. Whereas IL-6 was also up-regulated in young mice after DE exposure, no major effects were evident on the expression of IL-8 mRNA. Expression of the antioxidant enzyme manganese superoxide dismutase (MnSOD) was decreased in lung tissue from young animals after single or repeated exposure to DE. In contrast, constitutive expression of MnSOD was not evident in lungs of old mice, and DE had no effect on the expression of this antioxidant. These preliminary data confirm that old mice are more sensitive to DE than young mice and that increased sensitivity is associated with altered expression of inflammatory cytokines and the antioxidant MnSOD. These aberrations may contribute to the increased susceptibility of old mice to inhaled PM.</p>","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 151","pages":"3-31"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329244/pdf/nihms453648.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29721575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}