1,3-丁二烯环氧代谢物在人体细胞中立体化学构型的致突变性。

Ryan Q Meng, Linda C Hackfeld, Richard P Hedge, Lynne A Wisse, Diana L Redetzke, Vernon E Walker
{"title":"1,3-丁二烯环氧代谢物在人体细胞中立体化学构型的致突变性。","authors":"Ryan Q Meng,&nbsp;Linda C Hackfeld,&nbsp;Richard P Hedge,&nbsp;Lynne A Wisse,&nbsp;Diana L Redetzke,&nbsp;Vernon E Walker","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The mutagenic and carcinogenic effects of 1,3-butadiene (BD*) are related to its bioactivation to several DNA-reactive metabolites, including 1,2-epoxy-3-butene (BDO), 1,2,3,4-diepoxybutane (BDO2), and 1,2-dihydroxy-3,4-epoxybutane (BDO-diol). Accumulated evidence indicates that stereochemical configurations of BD metabolites may play a role in the mutagenic and carcinogenic action of BD. The objective of this study was to evaluate the cytotoxicity and mutagenicity of each stereoisomer of major BD metabolites in human cells. For this purpose, nine stereochemical forms of BDO, BDO2, and BDO-diol were synthesized. TK6 cells, a human lymphoblastoid cell line, were exposed to each stereoisomer. Cytotoxicity was measured by comparing cloning efficiencies (CEs) in chemical-exposed cells versus those in control cells. Based on the results of cytotoxicity tests, TK6 cells were exposed to 0; 2, 4, or 6 pM of each form of BDO2, or to 0, 200, 400, or 600 pMof each form of BDO for 24 hours to determine the mutagenic efficiencies. The exposure concentrations for BDO-diol ranged from 5 to 1000 pM. The mutagenicity was measured by determining, in a lymphocyte cloning assay, the mutant frequencies (Mfs) in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and thymidine kinase (TK) genes. HPRT mutants collected from cells exposed to the three forms of BDO2 were analyzed by polymerase chain reaction (PCR) to characterize large genetic alterations. All three stereoisomers of BDO2 [(2R,3R)-BDO2, (2S,3S)-BDO2, and meso-BDO2] caused increased HPRT and TK Mfs compared with the concurrent control samples, with P values ranged from 0.05 to 0.001. There were no significant differences in cytotoxicity or mutagenicity among the three isomers of BDO2. Molecular analysis ofHPRTmutants revealed similar distributions of deletion mutations caused by the three isomers of BDO2. There were also no statistical differences in mutagenic efficiencies between the two isomers of BDO [(2R)-BDO and (2S)-BDO] in TK6 cells. These results were consistent with the in vivo finding that there was little difference in the mutagenic efficiencies of (+)-BDO2 versus meso-BDO2 in rodents. Thus, in terms of mutagenic potency, there was no evidence that stereochemical configurations of BDO and BDO2 play a significant role in the mutagenicity and carcinogenicity of BD. The most significant results of this study were the marked differences in cytotoxicity and mutagenicity among the four stereoisomers of BDO-diol [(2R,3R)-BDO-diol, (2R,3S)-BDO-diol, (2S,3R)-BDO-diol, and (2S,3S)-BDO-diol]. (2R,3S)-BDO-diol was at least 30-fold more cytotoxic and mutagenic than the other three forms of BDO-diol. This was consistent with the finding that 75% of the adduct N7-(2,3,4-trihydroxybutyl)guanine (THB-Gua) originated from (2R,3S)-BDO-diol in the lungs of mice exposed to BD. The mutagenic potency of (2R,3S)-BDO-diol was much closer to that of BDO2 than previously demonstrated in experiments in which stereochemistry was not considered. The current study demonstrated that the mutagenic potency of (2R,3S)-BDO-diol was only 5-to-l0-fold less than the average equimolar effect of BDO2 stereoisomers in the HPRT and TK genes, and was 10-to-20-fold greater than the average equimolar effect of BDO stereoisomers in the HPRT and TKgenes. Previous DNA and hemoglobin adduct data demonstrated that BDO-diol is the dominant BD metabolite available to react with macromolecules in vivo after BD exposure (Pérez et al. 1997; Swenberg et al. 2001). Thus, the differences in BD carcinogenesis among rodent species may be significantly accounted for by the stereochemistry-dependent distributions of BDO-diol metabolites and BDO-diol-DNA adducts, and by the mutagenic efficiencies of BDO-diol in mice and rats.</p>","PeriodicalId":74687,"journal":{"name":"Research report (Health Effects Institute)","volume":" 150","pages":"1-34; discussion 35-41"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutagenicity of stereochemical configurations of 1,3-butadiene epoxy metabolites in human cells.\",\"authors\":\"Ryan Q Meng,&nbsp;Linda C Hackfeld,&nbsp;Richard P Hedge,&nbsp;Lynne A Wisse,&nbsp;Diana L Redetzke,&nbsp;Vernon E Walker\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mutagenic and carcinogenic effects of 1,3-butadiene (BD*) are related to its bioactivation to several DNA-reactive metabolites, including 1,2-epoxy-3-butene (BDO), 1,2,3,4-diepoxybutane (BDO2), and 1,2-dihydroxy-3,4-epoxybutane (BDO-diol). Accumulated evidence indicates that stereochemical configurations of BD metabolites may play a role in the mutagenic and carcinogenic action of BD. The objective of this study was to evaluate the cytotoxicity and mutagenicity of each stereoisomer of major BD metabolites in human cells. For this purpose, nine stereochemical forms of BDO, BDO2, and BDO-diol were synthesized. TK6 cells, a human lymphoblastoid cell line, were exposed to each stereoisomer. Cytotoxicity was measured by comparing cloning efficiencies (CEs) in chemical-exposed cells versus those in control cells. Based on the results of cytotoxicity tests, TK6 cells were exposed to 0; 2, 4, or 6 pM of each form of BDO2, or to 0, 200, 400, or 600 pMof each form of BDO for 24 hours to determine the mutagenic efficiencies. The exposure concentrations for BDO-diol ranged from 5 to 1000 pM. The mutagenicity was measured by determining, in a lymphocyte cloning assay, the mutant frequencies (Mfs) in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and thymidine kinase (TK) genes. HPRT mutants collected from cells exposed to the three forms of BDO2 were analyzed by polymerase chain reaction (PCR) to characterize large genetic alterations. All three stereoisomers of BDO2 [(2R,3R)-BDO2, (2S,3S)-BDO2, and meso-BDO2] caused increased HPRT and TK Mfs compared with the concurrent control samples, with P values ranged from 0.05 to 0.001. There were no significant differences in cytotoxicity or mutagenicity among the three isomers of BDO2. Molecular analysis ofHPRTmutants revealed similar distributions of deletion mutations caused by the three isomers of BDO2. There were also no statistical differences in mutagenic efficiencies between the two isomers of BDO [(2R)-BDO and (2S)-BDO] in TK6 cells. These results were consistent with the in vivo finding that there was little difference in the mutagenic efficiencies of (+)-BDO2 versus meso-BDO2 in rodents. Thus, in terms of mutagenic potency, there was no evidence that stereochemical configurations of BDO and BDO2 play a significant role in the mutagenicity and carcinogenicity of BD. The most significant results of this study were the marked differences in cytotoxicity and mutagenicity among the four stereoisomers of BDO-diol [(2R,3R)-BDO-diol, (2R,3S)-BDO-diol, (2S,3R)-BDO-diol, and (2S,3S)-BDO-diol]. (2R,3S)-BDO-diol was at least 30-fold more cytotoxic and mutagenic than the other three forms of BDO-diol. This was consistent with the finding that 75% of the adduct N7-(2,3,4-trihydroxybutyl)guanine (THB-Gua) originated from (2R,3S)-BDO-diol in the lungs of mice exposed to BD. The mutagenic potency of (2R,3S)-BDO-diol was much closer to that of BDO2 than previously demonstrated in experiments in which stereochemistry was not considered. The current study demonstrated that the mutagenic potency of (2R,3S)-BDO-diol was only 5-to-l0-fold less than the average equimolar effect of BDO2 stereoisomers in the HPRT and TK genes, and was 10-to-20-fold greater than the average equimolar effect of BDO stereoisomers in the HPRT and TKgenes. Previous DNA and hemoglobin adduct data demonstrated that BDO-diol is the dominant BD metabolite available to react with macromolecules in vivo after BD exposure (Pérez et al. 1997; Swenberg et al. 2001). Thus, the differences in BD carcinogenesis among rodent species may be significantly accounted for by the stereochemistry-dependent distributions of BDO-diol metabolites and BDO-diol-DNA adducts, and by the mutagenic efficiencies of BDO-diol in mice and rats.</p>\",\"PeriodicalId\":74687,\"journal\":{\"name\":\"Research report (Health Effects Institute)\",\"volume\":\" 150\",\"pages\":\"1-34; discussion 35-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research report (Health Effects Institute)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research report (Health Effects Institute)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1,3-丁二烯(BD*)的致突变和致癌作用与其对几种dna反应性代谢物的生物活性有关,包括1,2-环氧-3-丁烯(BDO), 1,2,3,4-二氧基丁烷(BDO2)和1,2-二羟基-3,4-环氧丁烷(BDO-diol)。越来越多的证据表明,BD代谢物的立体构型可能在BD的致突变和致癌作用中发挥作用。本研究的目的是评估BD主要代谢物的每种立体异构体在人细胞中的细胞毒性和致突变性。为此,合成了九种立体构型的BDO、BDO2和BDO-二醇。TK6细胞,一种人淋巴母细胞系,暴露于每一种立体异构体。通过比较化学暴露细胞与对照细胞的克隆效率(CEs)来测量细胞毒性。根据细胞毒性试验结果,TK6细胞暴露于0;每一种形式的BDO2的2,4或6pm,或每一种形式的BDO的0,200,400或600pm,持续24小时,以确定致突变效率。bdo -二醇的暴露浓度为5pm至1000pm。通过淋巴细胞克隆法测定次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(HPRT)和胸苷激酶(TK)基因的突变频率(Mfs)来测定其致突变性。通过聚合酶链反应(PCR)分析暴露于三种BDO2形式的细胞中收集的HPRT突变体,以表征大的遗传改变。BDO2的三种立体异构体[(2R,3R)-BDO2, (2S,3S)-BDO2,和meso-BDO2]与同期对照样品相比,HPRT和TK Mfs均升高,P值在0.05 ~ 0.001之间。BDO2的三种异构体在细胞毒性和致突变性方面无显著差异。hprtmutants的分子分析显示,BDO2的三种异构体引起的缺失突变分布相似。BDO的两种异构体[(2R)-BDO和(2S)-BDO]在TK6细胞中的诱变效率也无统计学差异。这些结果与体内实验结果一致,即(+)-BDO2与中效bdo2在啮齿动物体内的致突变性效率几乎没有差异。因此,在致突变性效力方面,没有证据表明BDO和BDO2的立体化学构型在BD的致突变性和致癌性中起显著作用。本研究最显著的结果是BDO-diol的四种立体异构体[(2R,3R)-BDO-diol, (2R,3S)-BDO-diol, (2S,3R)-BDO-diol, (2S,3S)-BDO-diol]在细胞毒性和致突变性方面存在显著差异。(2R,3S)-BDO-diol的细胞毒性和诱变性比其他三种形式的BDO-diol至少高30倍。这与发现75%的加合物N7-(2,3,4-三羟基丁基)鸟嘌呤(THB-Gua)来源于暴露于双酚d小鼠肺中的(2R,3S)- bdo -二醇相一致。(2R,3S)- bdo -二醇的诱变效力比之前在不考虑立体化学的实验中证明的BDO2的诱变效力更接近。目前的研究表明,(2R,3S)-BDO-二醇的诱变效力仅比BDO2立体异构体在HPRT和TK基因中的平均等摩尔效应低5- 10倍,比BDO立体异构体在HPRT和tk基因中的平均等摩尔效应高10- 20倍。先前的DNA和血红蛋白加合物数据表明,bdo -二醇是bpa暴露后体内可与大分子发生反应的主要代谢物(p等人,1997;Swenberg et al. 2001)。因此,bdo -二醇代谢物和bdo -二醇- dna加合物的立体化学依赖性分布,以及bdo -二醇在小鼠和大鼠中的致突变效率,可能在很大程度上解释了啮齿动物物种之间BD致癌的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutagenicity of stereochemical configurations of 1,3-butadiene epoxy metabolites in human cells.

The mutagenic and carcinogenic effects of 1,3-butadiene (BD*) are related to its bioactivation to several DNA-reactive metabolites, including 1,2-epoxy-3-butene (BDO), 1,2,3,4-diepoxybutane (BDO2), and 1,2-dihydroxy-3,4-epoxybutane (BDO-diol). Accumulated evidence indicates that stereochemical configurations of BD metabolites may play a role in the mutagenic and carcinogenic action of BD. The objective of this study was to evaluate the cytotoxicity and mutagenicity of each stereoisomer of major BD metabolites in human cells. For this purpose, nine stereochemical forms of BDO, BDO2, and BDO-diol were synthesized. TK6 cells, a human lymphoblastoid cell line, were exposed to each stereoisomer. Cytotoxicity was measured by comparing cloning efficiencies (CEs) in chemical-exposed cells versus those in control cells. Based on the results of cytotoxicity tests, TK6 cells were exposed to 0; 2, 4, or 6 pM of each form of BDO2, or to 0, 200, 400, or 600 pMof each form of BDO for 24 hours to determine the mutagenic efficiencies. The exposure concentrations for BDO-diol ranged from 5 to 1000 pM. The mutagenicity was measured by determining, in a lymphocyte cloning assay, the mutant frequencies (Mfs) in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) and thymidine kinase (TK) genes. HPRT mutants collected from cells exposed to the three forms of BDO2 were analyzed by polymerase chain reaction (PCR) to characterize large genetic alterations. All three stereoisomers of BDO2 [(2R,3R)-BDO2, (2S,3S)-BDO2, and meso-BDO2] caused increased HPRT and TK Mfs compared with the concurrent control samples, with P values ranged from 0.05 to 0.001. There were no significant differences in cytotoxicity or mutagenicity among the three isomers of BDO2. Molecular analysis ofHPRTmutants revealed similar distributions of deletion mutations caused by the three isomers of BDO2. There were also no statistical differences in mutagenic efficiencies between the two isomers of BDO [(2R)-BDO and (2S)-BDO] in TK6 cells. These results were consistent with the in vivo finding that there was little difference in the mutagenic efficiencies of (+)-BDO2 versus meso-BDO2 in rodents. Thus, in terms of mutagenic potency, there was no evidence that stereochemical configurations of BDO and BDO2 play a significant role in the mutagenicity and carcinogenicity of BD. The most significant results of this study were the marked differences in cytotoxicity and mutagenicity among the four stereoisomers of BDO-diol [(2R,3R)-BDO-diol, (2R,3S)-BDO-diol, (2S,3R)-BDO-diol, and (2S,3S)-BDO-diol]. (2R,3S)-BDO-diol was at least 30-fold more cytotoxic and mutagenic than the other three forms of BDO-diol. This was consistent with the finding that 75% of the adduct N7-(2,3,4-trihydroxybutyl)guanine (THB-Gua) originated from (2R,3S)-BDO-diol in the lungs of mice exposed to BD. The mutagenic potency of (2R,3S)-BDO-diol was much closer to that of BDO2 than previously demonstrated in experiments in which stereochemistry was not considered. The current study demonstrated that the mutagenic potency of (2R,3S)-BDO-diol was only 5-to-l0-fold less than the average equimolar effect of BDO2 stereoisomers in the HPRT and TK genes, and was 10-to-20-fold greater than the average equimolar effect of BDO stereoisomers in the HPRT and TKgenes. Previous DNA and hemoglobin adduct data demonstrated that BDO-diol is the dominant BD metabolite available to react with macromolecules in vivo after BD exposure (Pérez et al. 1997; Swenberg et al. 2001). Thus, the differences in BD carcinogenesis among rodent species may be significantly accounted for by the stereochemistry-dependent distributions of BDO-diol metabolites and BDO-diol-DNA adducts, and by the mutagenic efficiencies of BDO-diol in mice and rats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信