Oxford open immunology最新文献

筛选
英文 中文
Long COVID: a narrative review of the clinical aftermaths of COVID-19 with a focus on the putative pathophysiology and aspects of physical activity. 长COVID:对COVID-19临床后果的叙述性回顾,重点是推测的病理生理学和体育锻炼方面。
Oxford open immunology Pub Date : 2022-09-16 eCollection Date: 2022-01-01 DOI: 10.1093/oxfimm/iqac006
Simon Haunhorst, Wilhelm Bloch, Heiko Wagner, Claudia Ellert, Karsten Krüger, Daniel C Vilser, Kathrin Finke, Philipp Reuken, Mathias W Pletz, Andreas Stallmach, Christian Puta
{"title":"Long COVID: a narrative review of the clinical aftermaths of COVID-19 with a focus on the putative pathophysiology and aspects of physical activity.","authors":"Simon Haunhorst, Wilhelm Bloch, Heiko Wagner, Claudia Ellert, Karsten Krüger, Daniel C Vilser, Kathrin Finke, Philipp Reuken, Mathias W Pletz, Andreas Stallmach, Christian Puta","doi":"10.1093/oxfimm/iqac006","DOIUrl":"10.1093/oxfimm/iqac006","url":null,"abstract":"<p><p>The pandemic coronavirus disease 2019 (COVID-19) can cause multi-systemic symptoms that can persist beyond the acute symptomatic phase. The post-acute sequelae of COVID-19 (PASC), also referred to as long COVID, describe the persistence of symptoms and/or long-term complications beyond 4 weeks from the onset of the acute symptoms and are estimated to affect at least 20% of the individuals infected with SARS-CoV-2 regardless of their acute disease severity. The multi-faceted clinical picture of long COVID encompasses a plethora of undulating clinical manifestations impacting various body systems such as fatigue, headache, attention disorder, hair loss and exercise intolerance. The physiological response to exercise testing is characterized by a reduced aerobic capacity, cardiocirculatory limitations, dysfunctional breathing patterns and an impaired ability to extract and use oxygen. Still, to this day, the causative pathophysiological mechanisms of long COVID remain to be elucidated, with long-term organ damage, immune system dysregulation and endotheliopathy being among the hypotheses discussed. Likewise, there is still a paucity of treatment options and evidence-based strategies for the management of the symptoms. In sum, this review explores different aspects of long COVID and maps the literature on what is known about its clinical manifestations, potential pathophysiological mechanisms, and treatment options.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac006"},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10851761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 immunity and vaccine strategies in people with HIV. 艾滋病毒感染者的 SARS-CoV-2 免疫力和疫苗策略。
Oxford open immunology Pub Date : 2022-08-17 eCollection Date: 2022-01-01 DOI: 10.1093/oxfimm/iqac005
Claire Mullender, Kelly A S da Costa, Aljawharah Alrubayyi, Sarah L Pett, Dimitra Peppa
{"title":"SARS-CoV-2 immunity and vaccine strategies in people with HIV.","authors":"Claire Mullender, Kelly A S da Costa, Aljawharah Alrubayyi, Sarah L Pett, Dimitra Peppa","doi":"10.1093/oxfimm/iqac005","DOIUrl":"10.1093/oxfimm/iqac005","url":null,"abstract":"<p><p>Current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, based on the ancestral Wuhan strain, were developed rapidly to meet the needs of a devastating global pandemic. People living with Human Immunodeficiency Virus (PLWH) have been designated as a priority group for SARS-CoV-2 vaccination in most regions and varying primary courses (two- or three-dose schedule) and additional boosters are recommended depending on current CD4+ T cell count and/or detectable HIV viraemia. From the current published data, licensed vaccines are safe for PLWH, and stimulate robust responses to vaccination in those well controlled on antiretroviral therapy and with high CD4+ T cell counts. Data on vaccine efficacy and immunogenicity remain, however, scarce in PLWH, especially in people with advanced disease. A greater concern is a potentially diminished immune response to the primary course and subsequent boosters, as well as an attenuated magnitude and durability of protective immune responses. A detailed understanding of the breadth and durability of humoral and T cell responses to vaccination, and the boosting effects of natural immunity to SARS-CoV-2, in more diverse populations of PLWH with a spectrum of HIV-related immunosuppression is therefore critical. This article summarizes focused studies of humoral and cellular responses to SARS-CoV-2 infection in PLWH and provides a comprehensive review of the emerging literature on SARS-CoV-2 vaccine responses. Emphasis is placed on the potential effect of HIV-related factors and presence of co-morbidities modulating responses to SARS-CoV-2 vaccination, and the remaining challenges informing the optimal vaccination strategy to elicit enduring responses against existing and emerging variants in PLWH.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac005"},"PeriodicalIF":0.0,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9483639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets. 聚合物配制的自扩增RNA疫苗对雪貂流感病毒感染具有部分保护作用。
Oxford open immunology Pub Date : 2022-06-27 eCollection Date: 2022-01-01 DOI: 10.1093/oxfimm/iqac004
P F McKay, J Zhou, R Frise, A K Blakney, C R Bouton, Z Wang, K Hu, K Samnuan, J C Brown, R Kugathasan, J Yeow, M M Stevens, W S Barclay, J S Tregoning, R J Shattock
{"title":"Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets.","authors":"P F McKay,&nbsp;J Zhou,&nbsp;R Frise,&nbsp;A K Blakney,&nbsp;C R Bouton,&nbsp;Z Wang,&nbsp;K Hu,&nbsp;K Samnuan,&nbsp;J C Brown,&nbsp;R Kugathasan,&nbsp;J Yeow,&nbsp;M M Stevens,&nbsp;W S Barclay,&nbsp;J S Tregoning,&nbsp;R J Shattock","doi":"10.1093/oxfimm/iqac004","DOIUrl":"https://doi.org/10.1093/oxfimm/iqac004","url":null,"abstract":"<p><p>COVID-19 has demonstrated the power of RNA vaccines as part of a pandemic response toolkit. Another virus with pandemic potential is influenza. Further development of RNA vaccines in advance of a future influenza pandemic will save time and lives. As RNA vaccines require formulation to enter cells and induce antigen expression, the aim of this study was to investigate the impact of a recently developed bioreducible cationic polymer, pABOL for the delivery of a self-amplifying RNA (saRNA) vaccine for seasonal influenza virus in mice and ferrets. Mice and ferrets were immunized with pABOL formulated saRNA vaccines expressing either haemagglutinin (HA) from H1N1 or H3N2 influenza virus in a prime boost regime. Antibody responses, both binding and functional were measured in serum after immunization. Animals were then challenged with a matched influenza virus either directly by intranasal inoculation or in a contact transmission model. While highly immunogenic in mice, pABOL-formulated saRNA led to variable responses in ferrets. Animals that responded to the vaccine with higher levels of influenza virus-specific neutralizing antibodies were more protected against influenza virus infection. pABOL-formulated saRNA is immunogenic in ferrets, but further optimization of RNA vaccine formulation and constructs is required to increase the quality and quantity of the antibody response to the vaccine.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":" ","pages":"iqac004"},"PeriodicalIF":0.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40419531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The past, current and future epidemiological dynamic of SARS-CoV-2. 严重急性呼吸系统综合征冠状病毒2型过去、现在和未来的流行病学动态。
Oxford open immunology Pub Date : 2022-06-20 eCollection Date: 2022-01-01 DOI: 10.1093/oxfimm/iqac003
François Balloux, Cedric Tan, Leo Swadling, Damien Richard, Charlotte Jenner, Mala Maini, Lucy van Dorp
{"title":"The past, current and future epidemiological dynamic of SARS-CoV-2.","authors":"François Balloux, Cedric Tan, Leo Swadling, Damien Richard, Charlotte Jenner, Mala Maini, Lucy van Dorp","doi":"10.1093/oxfimm/iqac003","DOIUrl":"10.1093/oxfimm/iqac003","url":null,"abstract":"<p><p>SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac003"},"PeriodicalIF":0.0,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9194329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long Covid brain fog: a neuroinflammation phenomenon? 长冠脑雾:一种神经炎症现象?
Oxford open immunology Pub Date : 2022-01-01 DOI: 10.1093/oxfimm/iqac007
Emma Kavanagh
{"title":"Long Covid brain fog: a neuroinflammation phenomenon?","authors":"Emma Kavanagh","doi":"10.1093/oxfimm/iqac007","DOIUrl":"https://doi.org/10.1093/oxfimm/iqac007","url":null,"abstract":"<p><p>Neuroinflammation is a process triggered by an attack on the immune system. Activation of microglia in response to an immune system challenge can lead to a significant impact on cognitive processes, such as learning, memory and emotional regulation. Long Covid is an ongoing problem, affecting an estimated 1.3 million people within the UK alone, and one of its more significant, and as yet unexplained, symptoms is brain fog. Here, we discuss the potential role of neuroinflammation in Long Covid cognitive difficulties. Inflammatory cytokines have been found to play a significant role in reductions in LTP and LTD, a reduction in neurogenesis, and in dendritic sprouting. The potential behavioural consequences of such impacts are discussed. It is hoped that this article will allow for greater examination of the effects of inflammatory factors on brain function, most particularly in terms of their role in chronic conditions.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac007"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9358043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Is 'Long Covid' similar to 'Long SARS'? “长Covid”与“长SARS”相似吗?
Oxford open immunology Pub Date : 2022-01-01 DOI: 10.1093/oxfimm/iqac002
John Patcai
{"title":"Is 'Long Covid' similar to 'Long SARS'?","authors":"John Patcai","doi":"10.1093/oxfimm/iqac002","DOIUrl":"https://doi.org/10.1093/oxfimm/iqac002","url":null,"abstract":"Is “Long Covid” similar to “Long SARS” (Severe Acute Respiratory Syndrome)? In 2019, a new pandemic started, and is still ongoing. The causative virus is the only known close relative of the SARS coronavirus (SARS-CoV-1), and is accordingly called SARS-CoV-2. Follow-up for between 2 and 10 years of 50 post SARS patients in a rehabilitation setting led to publications and clinical impressions that are summarized here regarding significant permanent disability for some of these patients. Similarities between permanent symptoms post SARS, and the reported so-far unresolving symptoms of Long Covid are remarkable. This makes it possible to predict that some Long Covid symptoms will be permanent.","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac002"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9342392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Correction to: Molecular mimicry among human proteinase 3 and bacterial antigens: implications for development of c-ANCA associated vasculitis. 更正:人蛋白酶3和细菌抗原之间的分子模拟:c-ANCA相关血管炎发展的意义。
Oxford open immunology Pub Date : 2022-01-01 DOI: 10.1093/oxfimm/iqac011
{"title":"Correction to: Molecular mimicry among human proteinase 3 and bacterial antigens: implications for development of c-ANCA associated vasculitis.","authors":"","doi":"10.1093/oxfimm/iqac011","DOIUrl":"https://doi.org/10.1093/oxfimm/iqac011","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/oxfimm/iqac009.].</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac011"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10795356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation of single cells from human uterus in the third trimester of pregnancy: myometrium, decidua, amnion and chorion. 妊娠晚期人子宫单细胞的分离:子宫肌层、蜕膜、羊膜和绒毛膜。
Oxford open immunology Pub Date : 2022-01-01 DOI: 10.1093/oxfimm/iqac010
Alexander T H Cocker, Emily M Whettlock, Brendan Browne, Pei F Lai, Jonathan K H Li, Sivatharjini P Sivarajasingam, Nesrina Imami, Mark R Johnson, Victoria Male
{"title":"Isolation of single cells from human uterus in the third trimester of pregnancy: myometrium, decidua, amnion and chorion.","authors":"Alexander T H Cocker,&nbsp;Emily M Whettlock,&nbsp;Brendan Browne,&nbsp;Pei F Lai,&nbsp;Jonathan K H Li,&nbsp;Sivatharjini P Sivarajasingam,&nbsp;Nesrina Imami,&nbsp;Mark R Johnson,&nbsp;Victoria Male","doi":"10.1093/oxfimm/iqac010","DOIUrl":"https://doi.org/10.1093/oxfimm/iqac010","url":null,"abstract":"<p><p>During pregnancy, interactions between uterine immune cells and cells of the surrounding reproductive tissues are thought to be vital for regulating labour. The mechanism that specifically initiates spontaneous labour has not been determined, but distinct changes in uterine immune cell populations and their activation status have been observed during labour at term gestation. To understand the regulation of human labour by the immune system, the ability to isolate both immune cells and non-immune cells from the uterus is required. Here, we describe protocols developed in our laboratory to isolate single cells from uterine tissues, which preserve both immune and non-immune cell populations for further analysis. We provide detailed methods for isolating immune and non-immune cells from human myometrium, chorion, amnion and decidua, together with representative flow cytometry analysis of isolated cell populations present. The protocols can be completed in tandem and take approximately 4-5 h, resulting in single-cell suspensions that contain viable leucocytes, and non-immune cells in sufficient numbers for single-cell analysis approaches such as flow cytometry and single cell RNA sequencing (scRNAseq).</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac010"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9342394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COP27 Climate Change Conference: urgent action needed for Africa and the world: Wealthy nations must step up support for Africa and vulnerable countries in addressing past, present and future impacts of climate change. COP27气候变化会议:非洲和世界需要采取紧急行动:富裕国家必须加强对非洲和脆弱国家的支持,以应对气候变化过去、现在和未来的影响。
Oxford open immunology Pub Date : 2022-01-01 DOI: 10.1093/oxfimm/iqac008
Lukoye Atwoli, Gregory E Erhabor, Aiah A Gbakima, Abraham Haileamlak, Jean-Marie Kayembe Ntumba, James Kigera, Laurie Laybourn-Langton, Bob Mash, Joy Muhia, Fhumulani Mavis Mulaudzi, David Ofori-Adjei, Friday Okonofua, Arash Rashidian, Maha El-Adawy, Siaka Sidibé, Abdelmadjid Snouber, James Tumwine, Mohammad Sahar Yassien, Paul Yonga, Lilia Zakhama, Chris Zielinski
{"title":"COP27 Climate Change Conference: urgent action needed for Africa and the world: Wealthy nations must step up support for Africa and vulnerable countries in addressing past, present and future impacts of climate change.","authors":"Lukoye Atwoli,&nbsp;Gregory E Erhabor,&nbsp;Aiah A Gbakima,&nbsp;Abraham Haileamlak,&nbsp;Jean-Marie Kayembe Ntumba,&nbsp;James Kigera,&nbsp;Laurie Laybourn-Langton,&nbsp;Bob Mash,&nbsp;Joy Muhia,&nbsp;Fhumulani Mavis Mulaudzi,&nbsp;David Ofori-Adjei,&nbsp;Friday Okonofua,&nbsp;Arash Rashidian,&nbsp;Maha El-Adawy,&nbsp;Siaka Sidibé,&nbsp;Abdelmadjid Snouber,&nbsp;James Tumwine,&nbsp;Mohammad Sahar Yassien,&nbsp;Paul Yonga,&nbsp;Lilia Zakhama,&nbsp;Chris Zielinski","doi":"10.1093/oxfimm/iqac008","DOIUrl":"https://doi.org/10.1093/oxfimm/iqac008","url":null,"abstract":"No abstract available.","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac008"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10851755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Naive and memory T cells TCR-HLA-binding prediction. 幼稚T细胞和记忆T细胞tcr - hla结合预测。
Oxford open immunology Pub Date : 2022-01-01 DOI: 10.1093/oxfimm/iqac001
Neta Glazer, Ofek Akerman, Yoram Louzoun
{"title":"Naive and memory T cells TCR-HLA-binding prediction.","authors":"Neta Glazer,&nbsp;Ofek Akerman,&nbsp;Yoram Louzoun","doi":"10.1093/oxfimm/iqac001","DOIUrl":"https://doi.org/10.1093/oxfimm/iqac001","url":null,"abstract":"<p><p>T cells recognize antigens through the interaction of their T cell receptor (TCR) with a peptide-major histocompatibility complex (pMHC) molecule. Following thymic-positive selection, TCRs in peripheral naive T cells are expected to bind MHC alleles of the host. Peripheral clonal selection is expected to further increase the frequency of antigen-specific TCRs that bind to the host MHC alleles. To check for a systematic preference for MHC-binding T cells in TCR repertoires, we developed Natural Language Processing-based methods to predict TCR<b>-</b>MHC binding independently of the peptide presented for Class I MHC alleles. We trained a classifier on published TCR<b>-</b>pMHC binding pairs and obtained a high area under curve (AUC) of over 0.90 on the test set. However, when applied to TCR repertoires, the accuracy of the classifier dropped. We thus developed a two-stage prediction model, based on large-scale naive and memory TCR repertoires, denoted T<b>C</b>R H<b>LA</b>-b<b>i</b>nding p<b>re</b>dictor (CLAIRE). Since each host carries multiple human leukocyte antigen (HLA) alleles, we first computed whether a TCR on a CD8 T cell binds an MHC from any of the host Class-I HLA alleles. We then performed an iteration, where we predict the binding with the most probable allele from the first round. We show that this classifier is more precise for memory than for naïve cells. Moreover, it can be transferred between datasets. Finally, we developed a CD4-CD8 T cell classifier to apply CLAIRE to unsorted bulk sequencing datasets and showed a high AUC of 0.96 and 0.90 on large datasets. CLAIRE is available through a GitHub at: https://github.com/louzounlab/CLAIRE, and as a server at: https://claire.math.biu.ac.il/Home.</p>","PeriodicalId":74384,"journal":{"name":"Oxford open immunology","volume":"3 1","pages":"iqac001"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10851758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信