Nucleus (Austin, Tex.)最新文献

筛选
英文 中文
Sensing the squeeze: nuclear mechanotransduction in health and disease. 感知挤压:健康和疾病中的核机械传导。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-07-01 DOI: 10.1080/19491034.2024.2374854
Luv Kishore Srivastava, Allen J Ehrlicher
{"title":"Sensing the squeeze: nuclear mechanotransduction in health and disease.","authors":"Luv Kishore Srivastava, Allen J Ehrlicher","doi":"10.1080/19491034.2024.2374854","DOIUrl":"10.1080/19491034.2024.2374854","url":null,"abstract":"<p><p>The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. 长非编码 RNA:在细胞应激反应和调节染色质的表观遗传机制中的作用。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-05-22 DOI: 10.1080/19491034.2024.2350180
Jeffrey A Nickerson, Fatemeh Momen-Heravi
{"title":"Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin.","authors":"Jeffrey A Nickerson, Fatemeh Momen-Heravi","doi":"10.1080/19491034.2024.2350180","DOIUrl":"10.1080/19491034.2024.2350180","url":null,"abstract":"<p><p>Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PML Nuclear bodies: the cancer connection and beyond. PML 核体:与癌症的联系及其他。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-02-27 DOI: 10.1080/19491034.2024.2321265
Majdouline Abou-Ghali, Valérie Lallemand-Breitenbach
{"title":"PML Nuclear bodies: the cancer connection and beyond.","authors":"Majdouline Abou-Ghali, Valérie Lallemand-Breitenbach","doi":"10.1080/19491034.2024.2321265","DOIUrl":"10.1080/19491034.2024.2321265","url":null,"abstract":"<p><p>Promyelocytic leukemia (PML) nuclear bodies, membrane-less organelles in the nucleus, play a crucial role in cellular homeostasis. These dynamic structures result from the assembly of scaffolding PML proteins and various partners. Recent crystal structure analyses revealed essential self-interacting domains, while liquid-liquid phase separation contributes to their formation. PML bodies orchestrate post-translational modifications, particularly stress-induced SUMOylation, impacting target protein functions. Serving as hubs in multiple signaling pathways, they influence cellular processes like senescence. Dysregulation of PML expression contributes to diseases, including cancer, highlighting their significance. Therapeutically, PML bodies are promising targets, exemplified by successful acute promyelocytic leukemia treatment with arsenic trioxide and retinoic acid restoring PML bodies. Understanding their functions illuminates both normal and pathological cellular physiology, guiding potential therapies. This review explores recent advancements in PML body biogenesis, biochemical activity, and their evolving biological roles.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Narrowing down the candidates of beneficial A-to-I RNA editing by comparing the recoding sites with uneditable counterparts. 通过比较重编码位点与不可编辑的对应位点,缩小有益的 A 到 I RNA 编辑的候选范围。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-01-29 DOI: 10.1080/19491034.2024.2304503
Tianyou Zhao, Ling Ma, Shiwen Xu, Wanzhi Cai, Hu Li, Yuange Duan
{"title":"Narrowing down the candidates of beneficial A-to-I RNA editing by comparing the recoding sites with uneditable counterparts.","authors":"Tianyou Zhao, Ling Ma, Shiwen Xu, Wanzhi Cai, Hu Li, Yuange Duan","doi":"10.1080/19491034.2024.2304503","DOIUrl":"10.1080/19491034.2024.2304503","url":null,"abstract":"<p><p>Adar-mediated adenosine-to-inosine (A-to-I) RNA editing mainly occurs in nucleus and diversifies the transcriptome in a flexible manner. It has been a challenging task to identify beneficial editing sites from the sea of total editing events. The functional Ser>Gly auto-recoding site in insect <i>Adar</i> gene has uneditable Ser codons in ancestral nodes, indicating the selective advantage to having an editable status. Here, we extended this case study to more metazoan species, and also looked for all <i>Drosophila</i> recoding events with potential uneditable synonymous codons. Interestingly, in <i>D. melanogaster</i>, the abundant nonsynonymous editing is enriched in the codons that have uneditable counterparts, but the <i>Adar</i> Ser>Gly case suggests that the editable orthologous codons in other species are not necessarily edited. The use of editable <i>versus</i> ancestral uneditable codon is a smart way to infer the selective advantage of RNA editing, and priority might be given to these editing sites for functional studies due to the feasibility to construct an uneditable allele. Our study proposes an idea to narrow down the candidates of beneficial recoding sites. Meanwhile, we stress that the matched transcriptomes are needed to verify the conservation of editing events during evolution.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139577285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergent microenvironments of nucleoli. 新出现的核小体微环境
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-03-05 DOI: 10.1080/19491034.2024.2319957
Matthew R King, Kiersten M Ruff, Rohit V Pappu
{"title":"Emergent microenvironments of nucleoli.","authors":"Matthew R King, Kiersten M Ruff, Rohit V Pappu","doi":"10.1080/19491034.2024.2319957","DOIUrl":"10.1080/19491034.2024.2319957","url":null,"abstract":"<p><p>In higher eukaryotes, the nucleolus harbors at least three sub-phases that facilitate multiple functionalities including ribosome biogenesis. The three prominent coexisting sub-phases are the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). Here, we review recent efforts in profiling sub-phase compositions that shed light on the types of physicochemical properties that emerge from compositional biases and territorial organization of specific types of macromolecules. We highlight roles played by molecular grammars which refers to protein sequence features including the substrate binding domains, the sequence features of intrinsically disordered regions, and the multivalence of these distinct types of domains / regions. We introduce the concept of a barcode of emergent physicochemical properties of nucleoli. Although our knowledge of the full barcode remains incomplete, we hope that the concept prompts investigations into undiscovered emergent properties and engenders an appreciation for how and why unique microenvironments control biochemical reactions.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoplasmic nucleoporin assemblage: the cellular artwork in physiology and disease. 细胞质核蛋白组合:生理学和疾病中的细胞艺术品。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-08-12 DOI: 10.1080/19491034.2024.2387534
Junyan Lin, Izabela Sumara
{"title":"Cytoplasmic nucleoporin assemblage: the cellular artwork in physiology and disease.","authors":"Junyan Lin, Izabela Sumara","doi":"10.1080/19491034.2024.2387534","DOIUrl":"10.1080/19491034.2024.2387534","url":null,"abstract":"<p><p>Nucleoporins, essential proteins building the nuclear pore, are pivotal for ensuring nucleocytoplasmic transport. While traditionally confined to the nuclear envelope, emerging evidence indicates their presence in various cytoplasmic structures, suggesting potential non-transport-related roles. This review consolidates findings on cytoplasmic nucleoporin assemblies across different states, including normal physiological conditions, stress, and pathology, exploring their structural organization, formation dynamics, and functional implications. We summarize the current knowledge and the latest concepts on the regulation of nucleoporin homeostasis, aiming to enhance our understanding of their unexpected roles in physiological and pathological processes.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323873/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. eIF4E 可协调 mRNA 处理、RNA 输出和翻译,从而改变特定蛋白质的生成。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-06-16 DOI: 10.1080/19491034.2024.2360196
Jean-Clément Mars, Biljana Culjkovic-Kraljacic, Katherine L B Borden
{"title":"eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production.","authors":"Jean-Clément Mars, Biljana Culjkovic-Kraljacic, Katherine L B Borden","doi":"10.1080/19491034.2024.2360196","DOIUrl":"10.1080/19491034.2024.2360196","url":null,"abstract":"<p><p>The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. 细胞核聚合物模型中染色质相分离与核形状波动相关。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-05-16 DOI: 10.1080/19491034.2024.2351957
Ali Goktug Attar, Jaroslaw Paturej, Edward J Banigan, Aykut Erbaş
{"title":"Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus.","authors":"Ali Goktug Attar, Jaroslaw Paturej, Edward J Banigan, Aykut Erbaş","doi":"10.1080/19491034.2024.2351957","DOIUrl":"10.1080/19491034.2024.2351957","url":null,"abstract":"<p><p>Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a \"wetting\"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of chromatin condensation disrupts planar cell migration. 抑制染色质凝聚会破坏细胞的平面迁移。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-03-11 DOI: 10.1080/19491034.2024.2325961
Jack Forman, Briar Hine, Samantha Kaonis, Soham Ghosh
{"title":"Inhibition of chromatin condensation disrupts planar cell migration.","authors":"Jack Forman, Briar Hine, Samantha Kaonis, Soham Ghosh","doi":"10.1080/19491034.2024.2325961","DOIUrl":"10.1080/19491034.2024.2325961","url":null,"abstract":"<p><p>Cell migration involves the actin cytoskeleton, and recently recognized nuclear involvement. In this study, we explore the impact of chromatin remodeling on cell migration using NIH 3T3 cells and a scratch wound assay subjected to pharmacological interventions. We inhibit histone deacetylases (HDACs) with Trichostatin A (TSA) and methyltransferase EZH2 with GSK126 to modulate chromatin compaction. Our results indicate that chromatin modifications impair wound closure efficiency, reduce individual cell migration speed, and disrupt migration persistence. Live-cell imaging reveals dynamic intranuclear chromatin remodeling and nuclear shape parameters during migration, influenced by both small- and large-scale chromatin remodeling. The altered nuclear shape is associated with disrupted cell and nuclear mechanics, suggesting a crucial interplay between chromatin remodeling, nuclear mechanics and migration. These findings shed light on the intricate connection between intranuclear chromatin dynamics, nuclear mechanics, and cell migration, providing a basis for further investigations into the molecular mechanisms governing these processes.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase separation in nuclear biology. 核生物学中的相分离。
Nucleus (Austin, Tex.) Pub Date : 2024-12-01 Epub Date: 2024-02-12 DOI: 10.1080/19491034.2024.2310424
Hao Jiang
{"title":"Phase separation in nuclear biology.","authors":"Hao Jiang","doi":"10.1080/19491034.2024.2310424","DOIUrl":"10.1080/19491034.2024.2310424","url":null,"abstract":"","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信