Nucleus (Austin, Tex.)最新文献

筛选
英文 中文
SATB1-mediated chromatin landscape in T cells. satb1介导的T细胞染色质景观。
Nucleus (Austin, Tex.) Pub Date : 2020-12-01 DOI: 10.1080/19491034.2020.1775037
Tomas Zelenka, Charalampos Spilianakis
{"title":"SATB1-mediated chromatin landscape in T cells.","authors":"Tomas Zelenka,&nbsp;Charalampos Spilianakis","doi":"10.1080/19491034.2020.1775037","DOIUrl":"https://doi.org/10.1080/19491034.2020.1775037","url":null,"abstract":"<p><p>The regulatory circuits that define developmental decisions of thymocytes are still incompletely resolved. SATB1 protein is predominantly expressed at the CD4<sup>+</sup>CD8<sup>+</sup>cell stage exerting its broad transcription regulation potential with both activatory and repressive roles. A series of post-translational modifications and the presence of potential SATB1 protein isoforms indicate the complexity of its regulatory potential. The most apparent mechanism of its involvement in gene expression regulation is via the orchestration of long-range chromatin loops between genes and their regulatory elements. Multiple SATB1 perturbations in mice uncovered a link to autoimmune diseases while clinical investigations on cancer research uncovered that SATB1 has a promoting role in several types of cancer and can be used as a prognostic biomarker. SATB1 is a multivalent tissue-specific factor with a broad and yet undetermined regulatory potential. Future investigations on this protein could further uncover T cell-specific regulatory pathways and link them to (patho)physiology.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 1","pages":"117-131"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1775037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39094184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies. 核片层缺乏时的核膜破裂、细胞死亡和组织损伤。
Nucleus (Austin, Tex.) Pub Date : 2020-12-01 DOI: 10.1080/19491034.2020.1815410
Natalie Y Chen, Paul H Kim, Loren G Fong, Stephen G Young
{"title":"Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies.","authors":"Natalie Y Chen, Paul H Kim, Loren G Fong, Stephen G Young","doi":"10.1080/19491034.2020.1815410","DOIUrl":"10.1080/19491034.2020.1815410","url":null,"abstract":"<p><p>The nuclear membranes function as a barrier to separate the cell nucleus from the cytoplasm, but this barrier can be compromised by nuclear membrane ruptures, leading to intermixing of nuclear and cytoplasmic contents. Spontaneous nuclear membrane ruptures (<i>i.e</i>., ruptures occurring in the absence of mechanical stress) have been observed in cultured cells, but they are more frequent in the setting of defects or deficiencies in nuclear lamins and when cells are subjected to mechanical stress. Nuclear membrane ruptures in cultured cells have been linked to DNA damage, but the relevance of ruptures to developmental or physiologic processes <i>in vivo</i> has received little attention. Recently, we addressed that issue by examining neuronal migration in the cerebral cortex, a developmental process that subjects the cell nucleus to mechanical stress. In the setting of lamin B1 deficiency, we observed frequent nuclear membrane ruptures in migrating neurons in the developing cerebral cortex and showed that those ruptures are likely the cause of observed DNA damage, neuronal cell death, and profound neuropathology. In this review, we discuss the physiologic relevance of nuclear membrane ruptures, with a focus on migrating neurons in cell culture and in the cerebral cortex of genetically modified mice.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 1","pages":"237-249"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1815410","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38365679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation. 细胞骨架蛋白在分化过程中调控基因表达和基因组组织中的新作用。
Nucleus (Austin, Tex.) Pub Date : 2020-12-01 DOI: 10.1080/19491034.2020.1742066
Xin Xie, S Raza Mahmood, Tamara Gjorgjieva, Piergiorgio Percipalle
{"title":"Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation.","authors":"Xin Xie,&nbsp;S Raza Mahmood,&nbsp;Tamara Gjorgjieva,&nbsp;Piergiorgio Percipalle","doi":"10.1080/19491034.2020.1742066","DOIUrl":"https://doi.org/10.1080/19491034.2020.1742066","url":null,"abstract":"<p><p>In the eukaryotic cell nucleus, cytoskeletal proteins are emerging as essential players in nuclear function. In particular, actin regulates chromatin as part of ATP-dependent chromatin remodeling complexes, it modulates transcription and it is incorporated into nascent ribonucleoprotein complexes, accompanying them from the site of transcription to polyribosomes. The nuclear actin pool is undistinguishable from the cytoplasmic one in terms of its ability to undergo polymerization and it has also been implicated in the dynamics of chromatin, regulating heterochromatin segregation at the nuclear lamina and maintaining heterochromatin levels in the nuclear interiors. One of the next frontiers is, therefore, to determine a possible involvement of nuclear actin in the functional architecture of the cell nucleus by regulating the hierarchical organization of chromatin and, thus, genome organization. Here, we discuss the repertoire of these potential actin functions and how they are likely to play a role in the context of cellular differentiation.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 1","pages":"53-65"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1742066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37771241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Nuclear filaments: role in chromosomal positioning and gene expression. 核丝:在染色体定位和基因表达中的作用。
Nucleus (Austin, Tex.) Pub Date : 2020-12-01 DOI: 10.1080/19491034.2020.1769445
Manindra Bera, Kaushik Sengupta
{"title":"Nuclear filaments: role in chromosomal positioning and gene expression.","authors":"Manindra Bera,&nbsp;Kaushik Sengupta","doi":"10.1080/19491034.2020.1769445","DOIUrl":"https://doi.org/10.1080/19491034.2020.1769445","url":null,"abstract":"ABSTRACT Nuclear lamins form an elastic meshwork underlying the inner nuclear membrane and provide mechanical rigidity to the nucleus and maintain shape. Lamins also maintain chromosome positioning and play important roles in several nuclear processes like replication, DNA damage repair, transcription, and epigenetic modifications. LMNA mutations affect cardiac tissue, muscle tissues, adipose tissues to precipitate several diseases collectively termed as laminopathies. However, the rationale behind LMNA mutations and laminopathies continues to elude scientists. During interphase, several chromosomes form inter/intrachromosomal contacts inside nucleoplasm and several chromosomal loops also stretch out to make a ‘loop-cluster’ which are key players to regulate gene expressions. In this perspective, we have proposed that the lamin network in tandem with nuclear actin and myosin provide mechanical rigidity to the chromosomal contacts and facilitate loop-clusters movements. LMNA mutations thus might perturb the landscape of chromosomal contacts or loop-clusters positioning which can impair gene expression profile.","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 1","pages":"99-110"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1769445","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37976523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Hyperosmotic stress: in situ chromatin phase separation. 高渗胁迫:原位染色质相分离。
Nucleus (Austin, Tex.) Pub Date : 2020-12-01 DOI: 10.1080/19491034.2019.1710321
Ada L Olins, Travis J Gould, Logan Boyd, Bettina Sarg, Donald E Olins
{"title":"Hyperosmotic stress: <i>in situ</i> chromatin phase separation.","authors":"Ada L Olins,&nbsp;Travis J Gould,&nbsp;Logan Boyd,&nbsp;Bettina Sarg,&nbsp;Donald E Olins","doi":"10.1080/19491034.2019.1710321","DOIUrl":"https://doi.org/10.1080/19491034.2019.1710321","url":null,"abstract":"<p><p>Dehydration of cells by acute hyperosmotic stress has profound effects upon cell structure and function. Interphase chromatin and mitotic chromosomes collapse (\"congelation\"). HL-60/S4 cells remain ~100% viable for, at least, 1 hour, exhibiting shrinkage to ~2/3 their original volume, when placed in 300mM sucrose in tissue culture medium. Fixed cells were imaged by immunostaining confocal and STED microscopy. At a \"global\" structural level (μm), mitotic chromosomes congeal into a residual gel with apparent (phase) separations of Ki67, CTCF, SMC2, RAD21, H1 histones and HMG proteins. At an \"intermediate\" level (sub-μm), radial distribution analysis of STED images revealed a most probable peak DNA density separation of ~0.16 μm, essentially unchanged by hyperosmotic stress. At a \"local\" structural level (~1-2 nm), in vivo crosslinking revealed essentially unchanged crosslinked products between H1, HMG and inner histones. Hyperosmotic cellular stress is discussed in terms of concepts of mitotic chromosome structure and liquid-liquid phase separation.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 1","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2019.1710321","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37531731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Recent advances in understanding the biological roles of the plant nuclear envelope. 植物核膜生物学作用的最新研究进展。
Nucleus (Austin, Tex.) Pub Date : 2020-12-01 DOI: 10.1080/19491034.2020.1846836
Norman Reid Groves, Alecia Biel, Morgan Moser, Tyler Mendes, Katelyn Amstutz, Iris Meier
{"title":"Recent advances in understanding the biological roles of the plant nuclear envelope.","authors":"Norman Reid Groves, Alecia Biel, Morgan Moser, Tyler Mendes, Katelyn Amstutz, Iris Meier","doi":"10.1080/19491034.2020.1846836","DOIUrl":"10.1080/19491034.2020.1846836","url":null,"abstract":"<p><p>The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 1","pages":"330-346"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1846836","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38576813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Telomere-led meiotic chromosome movements: recent update in structure and function. 端粒引导的减数分裂染色体运动:结构和功能的最新进展。
Nucleus (Austin, Tex.) Pub Date : 2020-01-01 DOI: 10.1080/19491034.2020.1769456
C Y Lee, C G Bisig, M N Conrad, Y Ditamo, L Previato de Almeida, M E Dresser, R J Pezza
{"title":"Telomere-led meiotic chromosome movements: recent update in structure and function.","authors":"C Y Lee,&nbsp;C G Bisig,&nbsp;M N Conrad,&nbsp;Y Ditamo,&nbsp;L Previato de Almeida,&nbsp;M E Dresser,&nbsp;R J Pezza","doi":"10.1080/19491034.2020.1769456","DOIUrl":"https://doi.org/10.1080/19491034.2020.1769456","url":null,"abstract":"<p><p>In S. cerevisiae prophase meiotic chromosomes move by forces generated in the cytoplasm and transduced to the telomere via a protein complex located in the nuclear membrane. We know that chromosome movements require actin cytoskeleton [13,31] and the proteins Ndj1, Mps3, and Csm4. Until recently, the identity of the protein connecting Ndj1-Mps3 with the cytoskeleton components was missing. It was also not known the identity of a cytoplasmic motor responsible for interacting with the actin cytoskeleton and a protein at the outer nuclear envelope. Our recent work [36] identified Mps2 as the protein connecting Ndj1-Mps3 with cytoskeleton components; Myo2 as the cytoplasmic motor that interacts with Mps2; and Cms4 as a regulator of Mps2 and Myo2 interaction and activities (Figure 1). Below we present a model for how Mps2, Csm4, and Myo2 promote chromosome movements by providing the primary connections joining telomeres to the actin cytoskeleton through the LINC complex.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 9","pages":"111-116"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1769456","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37938446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Dynamics as a cause for the nanoscale organization of the genome. 动力学是基因组纳米级组织的原因。
Nucleus (Austin, Tex.) Pub Date : 2020-01-01 DOI: 10.1080/19491034.2020.1763093
Roman Barth, Genevieve Fourel, Haitham A Shaban
{"title":"Dynamics as a cause for the nanoscale organization of the genome.","authors":"Roman Barth,&nbsp;Genevieve Fourel,&nbsp;Haitham A Shaban","doi":"10.1080/19491034.2020.1763093","DOIUrl":"https://doi.org/10.1080/19491034.2020.1763093","url":null,"abstract":"<p><p>Chromatin 'blobs' were recently identified by live super-resolution imaging of labeled nucleosomes as pervasive but fleeting structural entities. However, the mechanisms leading to the formation of these blobs and their functional implications are unknown. We explore here whether causal relationships exist between parameters that characterize the chromatin blob dynamics and structure, by adapting a framework for spatio-temporal Granger-causality inference. Our analysis reveals that chromatin dynamics is a key determinant for both blob area and local density. Such causality, however, could be demonstrated only in 10-20% of the nucleus, suggesting that chromatin dynamics and structure at the nanometer scale are dominated by stochasticity. We show that the theory of active semiflexible polymers can be invoked to provide potential mechanisms leading to the organization of chromatin into blobs. Our results represent a first step toward elucidating the mechanisms that govern the dynamic and stochastic organization of chromatin in the cell nucleus.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"11 1","pages":"83-98"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1763093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37972186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Identification of new transmembrane proteins concentrated at the nuclear envelope using organellar proteomics of mesenchymal cells. 利用间充质细胞细胞器蛋白质组学鉴定集中在核膜上的新的跨膜蛋白。
Nucleus (Austin, Tex.) Pub Date : 2019-12-01 DOI: 10.1080/19491034.2019.1618175
Li-Chun Cheng, Sabyasachi Baboo, Cory Lindsay, Liza Brusman, Salvador Martinez-Bartolomé, Olga Tapia, Xi Zhang, John R Yates, Larry Gerace
{"title":"Identification of new transmembrane proteins concentrated at the nuclear envelope using organellar proteomics of mesenchymal cells.","authors":"Li-Chun Cheng,&nbsp;Sabyasachi Baboo,&nbsp;Cory Lindsay,&nbsp;Liza Brusman,&nbsp;Salvador Martinez-Bartolomé,&nbsp;Olga Tapia,&nbsp;Xi Zhang,&nbsp;John R Yates,&nbsp;Larry Gerace","doi":"10.1080/19491034.2019.1618175","DOIUrl":"https://doi.org/10.1080/19491034.2019.1618175","url":null,"abstract":"<p><p>The double membrane nuclear envelope (NE), which is contiguous with the ER, contains nuclear pore complexes (NPCs) - the channels for nucleocytoplasmic transport, and the nuclear lamina (NL) - a scaffold for NE and chromatin organization. Since numerous human diseases linked to NE proteins occur in mesenchyme-derived cells, we used proteomics to characterize NE and other subcellular fractions isolated from mesenchymal stem cells and from adipocytes and myocytes. Based on spectral abundance, we calculated enrichment scores for proteins in the NE fractions. We demonstrated by quantitative immunofluorescence microscopy that five little-characterized proteins with high enrichment scores are substantially concentrated at the NE, with Itprip exposed at the outer nuclear membrane, Smpd4 enriched at the NPC, and Mfsd10, Tmx4, and Arl6ip6 likely residing in the inner nuclear membrane. These proteins provide new focal points for studying the functions of the NE. Moreover, our datasets provide a resource for evaluating additional potential NE proteins.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"10 1","pages":"126-143"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2019.1618175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37023596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
Meiotic chromosome movement: what's lamin got to do with it? 减数分裂染色体运动:纤层蛋白与它有什么关系?
Nucleus (Austin, Tex.) Pub Date : 2019-12-01 DOI: 10.1080/19491034.2019.1572413
Dimitra Paouneskou, Verena Jantsch
{"title":"Meiotic chromosome movement: what's lamin got to do with it?","authors":"Dimitra Paouneskou,&nbsp;Verena Jantsch","doi":"10.1080/19491034.2019.1572413","DOIUrl":"https://doi.org/10.1080/19491034.2019.1572413","url":null,"abstract":"<p><p>Active meiotic chromosome movements are a universally conserved feature. They occur at the early stages of prophase of the first meiotic division and support the chromosome pairing process by (1) efficiently installing the synaptonemal complex between homologous chromosomes, (2) discouraging inadvertent chromosome interactions and (3) bringing homologous chromosomes into proximity. Chromosome movements are driven by forces in the cytoplasm, which are passed on to chromosome ends attached to the nuclear periphery by nuclear-membrane-spanning protein modules. In this extra view, we highlight our recent studies into the role of the nuclear lamina during this process to emphasize that it is a highly conserved structure in metazoans. The nuclear lamina forms a rigid proteinaceous network that underlies the inner nuclear membrane to provide stability to the nucleus. Misdemeanors of the nuclear lamina during meiosis has deleterious consequences for the viability and health of the offspring, highlighting the importance of a functional nuclear lamina during this cell cycle stage. Abbreviations: DSB: DNA double strand break; LEM: LAP2, Emerin, MAN1; LINC: LInker of the Nucleoskeleton and Cytoskeleton; RPM: rapid prophase movement; SUN/KASH: Sad1p, UNC-84/Klarsicht, ANC-1, Syne Homology.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2019.1572413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36881878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信