Nucleus (Austin, Tex.) Pub Date : 2025-12-01 Epub Date: 2025-02-12 DOI:10.1080/19491034.2024.2449520
Anjitha Nair, Jayati Khanna, Jashan Kler, Rohith Ragesh, Kundan Sengupta
{"title":"Nuclear envelope and chromatin choreography direct cellular differentiation.","authors":"Anjitha Nair, Jayati Khanna, Jashan Kler, Rohith Ragesh, Kundan Sengupta","doi":"10.1080/19491034.2024.2449520","DOIUrl":null,"url":null,"abstract":"<p><p>The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":"16 1","pages":"2449520"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleus (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19491034.2024.2449520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在错综复杂的细胞分化过程中,核膜在染色质的时空组织和转录调控方面发挥着不可或缺的作用。本综述概述了核包膜蛋白、转录因子和表观遗传修饰在控制细胞系特异性基因表达的分化过程中形成的不同调控网络。核薄层及其相关的核包膜蛋白通过核薄层相关域(LADs)在核外围近端组织异染色质。由于核薄层对机械敏感,我们严格研究了细胞外力对分化结果的影响。核膜由核孔复合体横跨,核孔复合体除了在运输中发挥核心作用外,还与染色质组织有关。此外,核包膜蛋白的突变会破坏分化,导致发育障碍。研究染色体重塑过程中核膜控制的潜在调控机制将加速我们对发育生物学和再生医学的基本理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear envelope and chromatin choreography direct cellular differentiation.

The nuclear envelope plays an indispensable role in the spatiotemporal organization of chromatin and transcriptional regulation during the intricate process of cell differentiation. This review outlines the distinct regulatory networks between nuclear envelope proteins, transcription factors and epigenetic modifications in controlling the expression of cell lineage-specific genes during differentiation. Nuclear lamina with its associated nuclear envelope proteins organize heterochromatin via Lamina-Associated Domains (LADs), proximal to the nuclear periphery. Since nuclear lamina is mechanosensitive, we critically examine the impact of extracellular forces on differentiation outcomes. The nuclear envelope is spanned by nuclear pore complexes which, in addition to their central role in transport, are associated with chromatin organization. Furthermore, mutations in the nuclear envelope proteins disrupt differentiation, resulting in developmental disorders. Investigating the underlying nuclear envelope controlled regulatory mechanisms of chromatin remodelling during lineage commitment will accelerate our fundamental understanding of developmental biology and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信