Dayaram Bhoyar Priyanka, Pooja Kamdi, Amit P. Bafana, P. Devara, Servana Sivanesan, Amrit Kumar, K. Krishnamurthi
{"title":"Prevalence, Dispersion and Nature of Bioaerosols over a Solid Landfill Site in Central India","authors":"Dayaram Bhoyar Priyanka, Pooja Kamdi, Amit P. Bafana, P. Devara, Servana Sivanesan, Amrit Kumar, K. Krishnamurthi","doi":"10.4209/aaqr.220431","DOIUrl":"https://doi.org/10.4209/aaqr.220431","url":null,"abstract":"Bioaerosols (or biological aerosols) consist of aerosol particles that originate biologically either as fully active component or as whole or part of inactive fragments. They are ubiquitously present in the atmospheric environment. They are the least investigated pollutants due to their complex structure and composition. The effects of bioaerosols, originating due to the processes, such as wastewater management, handling of sludge, composting, municipal solid waste","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strategy Design of PM2.5 Controlling for Northern Thailand","authors":"Karuna Jainontee, Prapat Pongkiatkul, Ying-Lin Wang, Roy J.F. Weng, Yi-Ting Lu, Ting Wang, Wang-Kun Chen","doi":"10.4209/aaqr.220432","DOIUrl":"https://doi.org/10.4209/aaqr.220432","url":null,"abstract":"The emission of fine particulate matter (PM 2.5 ) in dry season from the open biomass burning has caused a long-term negative impact on residents’ health in Northern Thailand. This study takes Chiang Mai and Chiang Rai provinces in Northern Thailand as the study areas to identify pollution episodes, analyze PM 2.5 source trajectories, and finally propose pollution control strategies accordingly. PM 2.5 levels during 2019–2021 of three representative air pollution monitoring stations (i.e., Chaing Mai-35T, Chiang Rai-57T, and Mae Sai-73T) in these two provinces were collected and analyzed. The Air Quality Index (AQI) defined by PM 2.5 level higher than 91 µ g m –3 causing serious adverse health effects was adopted to define periods having pollution levels, and the days of the air pollution episodes were identified. Based on these episodes, we applied the backward trajectory model to identify the sources of pollutants. Results showed that PM 2.5 levels were significantly higher between February to April compared with other months during 2019– 2021 at all three monitoring stations, indicating the severity of PM 2.5 episode during the dry season. The backward trajectory demonstrated that air mass transported through the Northern Thailand or nearby mountain areas (categorized as long-or short-transport-distance) contributed up to 21.6% and 75.9% of the total air mass, respectively. Although residents in these mountainous areas are accustomed to the biomass burning, we suggested that there should be urgent needs for the improvement of the long-term air quality in these two provinces. Therefore, this study proposes some control strategies including improvement of prevention knowledge, increase of the risk perception, cultivation of the protection behavior, and intensification of the social influence. In addition to reducing biomass burning pollution, this improvement plan also has a co-benefit of achieving resources recycling concomitantly. Providing effective management strategies may reduce the adverse health effects to Thai residents.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"10 23 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pitakchon Ponsawansong, T. Prapamontol, K. Rerkasem, S. Chantara, Kraichat Tantrakarnapa, S. Kawichai, Guoxing Li, Cao Fang, Xiaochuan Pan, Yanlin Zhang
{"title":"Sources of PM2.5 Oxidative Potential during Haze and Non-haze Seasons in Chiang Mai, Thailand","authors":"Pitakchon Ponsawansong, T. Prapamontol, K. Rerkasem, S. Chantara, Kraichat Tantrakarnapa, S. Kawichai, Guoxing Li, Cao Fang, Xiaochuan Pan, Yanlin Zhang","doi":"10.4209/aaqr.230030","DOIUrl":"https://doi.org/10.4209/aaqr.230030","url":null,"abstract":"Dithiothreitol (DTT) assay is an acellular technique used to investigate the oxidative potential (OP) of chemical substances bound on PM, which may potentially lead to oxidative stress after exposure. In this study, the source contributions of 16 high priority polycyclic aromatic hydrocarbons (PAHs), designated by the United States Environmental Protection Agency (U.S. EPA), and 10 species of water-soluble inorganic ions bound on PM 2.5 and their OP were investigated using DTT assay. The 24-hr ambient PM 2.5 samples were collected throughout 2018–2019 and the analyzed OP was compared during haze episodes, which generally occurs in the dry season, and non-haze rainy season in the Chiang Mai-Lamphun basin. During haze episodes, DTTv activity was positively correlated with 4–5 rings PAHs including fluoranthene (Fla) pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF) and benzo[k]fluoranthene (BkF) with coefficient ranging from 0.327 to 0.545, p = 0.002 to 0.009 (Pearson’s correlation). Inorganic ions, particularly NH 4+ , SO 42– , and NO 3– , which are the tracers of secondary inorganic aerosol (SIA), were positively correlated with DTTv activity (r = 0.394 to 0.659. p = 0.000 to 0.047; Spearman’s correlation). Positive matrix factorization (PMF) indicated the biomass burning factor had the highest contribution (57.9%) to PM 2.5 during haze episodes, followed by SIA (26.2%), and vehicle exhausts (7.8%). Furthermore, multiple linear regression (MLR) showed that biomass burning was the highest contributor to DTTv (43.0%). These results suggest that during haze episodes, higher levels of PM 2.5 and its chemical compositions play a crucial role on OP, particularly DTTv activity, which may induce oxidative stress in human body.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Performance of Sodium Tungsten Bronze Particles in Transparent Matrix: An Ensemble Particle Modeling Study","authors":"Hao Tu, Da-Ren Chen","doi":"10.4209/aaqr.230085","DOIUrl":"https://doi.org/10.4209/aaqr.230085","url":null,"abstract":"Abstract","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tsrong-Yi Wen, S. Chantara, J. Jalaludin, Puji Lestari, A. D. Syafei, T. V. Pham, Y. Tsai
{"title":"Overview of Aerosol and Air Pollution in South Eastern Asia Countries","authors":"Tsrong-Yi Wen, S. Chantara, J. Jalaludin, Puji Lestari, A. D. Syafei, T. V. Pham, Y. Tsai","doi":"10.4209/aaqr.230055","DOIUrl":"https://doi.org/10.4209/aaqr.230055","url":null,"abstract":"This paper consists of several topics on aerosol and air pollution in South Eastern Asia countries, including exposure and health effects of aerosol in Malaysia, characteristics/sources of particulate matter (PM) in Surabaya, Indonesia, size fraction of polycyclic aromatic hydrocarbons (PAHs) in Chiang Mai, Thailand, and removal of PMs using sodium hydroxyl and electrostatic precipitator (ESP) in Vietnam. Findings in Malaysia indicated that exposure to PM was associated with respiratory symptoms such as phlegm, coughing, wheezing and chest tightness among children in urban areas. Characterization of PM 2.5 and PM 2.5-10 samples collected in an industrial area in Surabaya, Indonesia showed that the highest levels of individual elements in PM 2.5 were S, Na, Si and K, and in PM 2.5-10 were Si, Ca, Cl, Na, and Mg. The main potential sources of PM 2.5 were diesel vehicle emission, a mixture of Cu industry and biomass combustion, metal industries using Ni, and construction, with contributions of 33%, 24.1%, 11.4%, and 7.9%, respectively. Meanwhile, main sources of PM 2.5-10 were soil dust and port industry, construction, road dust, and sea salt, with contributions of 32%, 28.8%, 14%, and 10%, respectively. In Chiang Mai, the highest PM mass and PAHs concentrations were found in the finest particle sizes (0.65 µ m – 0.43 µ m) in periods of intensive open burning (IOB) and low open burning (LOB), in both urban and rural areas, and the PAHs concentration (5.10 ng m – 3 ) in the fine fraction accounted for 45% to 47% and 32% to 37% during IOB and LOB periods, respectively. The study of particle removal from a charcoal kiln in Vietnam using a water and sodium hydroxyl solution sprayed in a top-down direction with fine droplets showed a removal efficiency of total dust of about 47.5% on average, while an ESP removed PM with high collection efficiency and low-pressure drop.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine A Fitton, B. Cox, M. Stewart, James Chalmers, J. Belch
{"title":"Respiratory Admissions Linked to Air Pollution in a Medium Sized City of the UK: A Case-crossover Study","authors":"Catherine A Fitton, B. Cox, M. Stewart, James Chalmers, J. Belch","doi":"10.4209/aaqr.230062","DOIUrl":"https://doi.org/10.4209/aaqr.230062","url":null,"abstract":"This study, from the Tayside Pollution Research Programme (TPRP), aims to investigate the effects of air pollution on respiratory hospital admissions in adults and children < 16 y of age, over a 14-year period, in Dundee, Scotland (population circa 148,270). We conducted a case-crossover study using routinely collected healthcare records from Ninewells Hospital, Dundee, Scotland from 2004 to 2017. Respiratory hospitalisation events were linked to daily nitric oxide gases (NO x , NO 2 , NO) extracted from publicly available data over this period. We used distributed lag models to allow for delayed effects of air pollutants up to 14 days. A total of 34,192 hospital admissions for a respiratory condition were included in this study (children = 9,501; adults = 24,691). Respiratory admissions in children were significantly associated with cumulative 14-day exposure to NO x (RR for a 10 µ g m –3 increase in concentration 1.020; 95% confidence interval 1.010–1.031), NO 2 (RR 1.086; 95% CI 1.036–1.139) and NO (RR 1.033; 95% CI 1.016–1.052). Similar estimates were observed for acute respiratory infection categories in children. Effects appeared to be somewhat delayed, with the largest estimates mostly observed around lag 6. No significant association was seen for respiratory admissions in adults. This study shows that both NO and NO 2 are associated with increased respiratory hospital admissions in children < 16 y of age, and that much more should be done to improve and enforce the established legal NO x pollution limits in cities for the sake of our children’s health.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Kung, Chien-Hsing Wu, N. Cheruiyot, Justus Kavita Mutuku, B. Huang, G. Chang-Chien
{"title":"The Current Status of Atmospheric Micro/Nanoplastics Research: Characterization, Analytical methods, Fate, and Human Health Risk","authors":"H. Kung, Chien-Hsing Wu, N. Cheruiyot, Justus Kavita Mutuku, B. Huang, G. Chang-Chien","doi":"10.4209/aaqr.220362","DOIUrl":"https://doi.org/10.4209/aaqr.220362","url":null,"abstract":"23 Atmospheric plastic debris (microplastic and nanoplastic) research is","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minh-Thuan Pham, T. T. Nguyen, S. You, Ya-Fen Wang
{"title":"Photoredox-Catalyzed Decomposition of Nitric oxide over Au-Enhanced Surface Plasmon Resonance ZnSn(OH)6 Microcubes","authors":"Minh-Thuan Pham, T. T. Nguyen, S. You, Ya-Fen Wang","doi":"10.4209/aaqr.220355","DOIUrl":"https://doi.org/10.4209/aaqr.220355","url":null,"abstract":"Air pollution is one of the most concerning issues today because of its adverse effects on living organisms and the environment. Therein, nitric oxide (NO) is the leading cause of the greenhouse effect, acid rain, and respiratory diseases. Therefore, discovering a low-cost, environmentally friendly, highly efficient photocatalysis technique to remove NO is necessary and urgent. In this work, the ZnSn(OH) 6 microcubes (cZHS) catalyst was decorated with golden nanoparticles (Au:cZHS) to enhance the photoredox-catalyzed degradation of NO under solar light by surface plasmon resonance (SPR). This work demonstrated the contribution of SPR to the photoredox performance of the ZHS. Herein, the photoredox efficiency of the cZHS increased dramatically under the effecting of SPR from the golden nanoparticles, the photoredox efficiency of the Au:cZHS reached 75%, about four times higher than that of cZHS. In addition, the generation of other nitrogen species, nitrogen dioxide (NO 2 ) conversion, and the reusability of the materials are calculated and discussed carefully by theory and experiment. On the other hand, the contribution and lifespan of radicals are also investigated clearly with trapping experiments and time-dependent electron spin resonance (ESR). This study provided the reader with a clear understanding of the SPR effect on the photocatalytic performance of cZHS, which may be necessary for future related studies.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingfeng Cao, S. Kim, Qisheng Ou, Hoo Young Chung, Weiqi Chen, W. Durfee, Susan L. Arnold, M. Hillmyer, Linsey Griffin, D. Pui
{"title":"Filtration Performance and Fiber Shedding Behavior in Common Respirator and Face Mask Materials","authors":"Qingfeng Cao, S. Kim, Qisheng Ou, Hoo Young Chung, Weiqi Chen, W. Durfee, Susan L. Arnold, M. Hillmyer, Linsey Griffin, D. Pui","doi":"10.4209/aaqr.220387","DOIUrl":"https://doi.org/10.4209/aaqr.220387","url":null,"abstract":"Wearing respirators and face masks is effective for protecting the public from COVID-19 infection. Thus, there is a need to evaluate the performance of the commonly used respirators and face masks. Two experimental systems were developed to investigate seven different mask materials, which have a fiber size range from 0.1 µ m (100 nm) to 20 µ m (20,000 nm). One of the systems is a computer-controlled setup for measuring the filtration performance, including size-dependent filtration efficiency and pressure drop, while the other system is for testing the fiber shedding behavior of the materials. The technique of scanning electron microscope (SEM) was applied to observe the dimensions and structures of those materials, which are made of nonwoven-fabrics electret-treated media, cotton woven fabrics, or nanofiber media. The study indicated that the 3M N95 respirator has the best overall filtration performance with over 95% efficiency and low pressure drop of 74.1 Pa. The two commercial cotton face masks have the worst filtration performance in general, with a filtration efficiency of around 25%. No broken fibers from by the seven tested respirator and face mask materials were discovered; however, dendrite structures likely shed by the SHEMA97 face mask with a size comparable to its nanoscale fibers were identified. The reason for this phenomena is presented.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}