Aerosol and Air Quality Research最新文献

筛选
英文 中文
Health Risk Assessment of Volatile Organic Compounds for Children in Indoor Air, Ulaanbaatar, Mongolia 室内空气中挥发性有机化合物对儿童健康的风险评估,乌兰巴托,蒙古
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.230028
Oyun-Erdene Otgonbyamba, G. Ganbat, Ser-Od Khuyag, Enkhjargal Altangerel, Bilguun Ganbold, Altangadas Bayanjargal, Altangerel Bat-Erdene, Bataa Chuluunbaatar, B. Badrakh, S. Batbaatar
{"title":"Health Risk Assessment of Volatile Organic Compounds for Children in Indoor Air, Ulaanbaatar, Mongolia","authors":"Oyun-Erdene Otgonbyamba, G. Ganbat, Ser-Od Khuyag, Enkhjargal Altangerel, Bilguun Ganbold, Altangadas Bayanjargal, Altangerel Bat-Erdene, Bataa Chuluunbaatar, B. Badrakh, S. Batbaatar","doi":"10.4209/aaqr.230028","DOIUrl":"https://doi.org/10.4209/aaqr.230028","url":null,"abstract":"This study presents levels of volatile organic compounds (VOCs) measured indoors for the first time in Ulaanbaatar, Mongolia, and quantifies the health risk for children emphasizing the urgent need to improve control for indoor VOCs sources. The 583 samples collected at 144 sites, including new buildings, old apartments, schools, workplaces, kindergartens, baishin, and Mongolian traditional gers , hospitals, schools, and shopping centers are analyzed. Formaldehyde was detected in 95.7% of the samples, while benzene was in 24.2%. The levels of benzene, toluene, and xylene in new and old buildings and apartments exceed the recommended values of AGÖF for volatile organic compounds in indoor air. The probabilistic Monte Carlo simulation method was used to estimate the risk exposure of four types of VOCs (benzene, formaldehyde, toluene, and m,p-xylene) to the health of the study population. The risk of cancer for benzene and formaldehyde is high in the age group of 7 months–4 years, m,p-xylene, and toluene show non-cancer risk in this age group.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of Air Pollutant Emissions from Heavy Industry Sector in North Korea 朝鲜重工业部门大气污染物排放估算
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.230066
Y. Lee, Y. Kim, M. Yeo
{"title":"Estimation of Air Pollutant Emissions from Heavy Industry Sector in North Korea","authors":"Y. Lee, Y. Kim, M. Yeo","doi":"10.4209/aaqr.230066","DOIUrl":"https://doi.org/10.4209/aaqr.230066","url":null,"abstract":"This study aims to estimate the amount of air pollutants emitted from heavy industrial facilities in North Korea. The heavy industry sector in North Korea was classified according to the South Korean definition, and the air pollutant emissions that it generated were estimated for 2017. Emissions of carbon monoxide (CO), nitrogen oxides (NO x ), and sulfur oxides (SO x ) by the heavy industry sector in North Korea were 22, 73, and 31%, respectively, of those in South Korea’ air pollutant emissions. Moreover, the CO, NO x , and SO x emissions comprised 0.6, 124, and 24%, respectively, of the total air pollutant emission in North Korea estimated from the Emissions Database for Global Atmospheric Research version 5.0 (EDGAR v5.0). Geographically, the NO x emissions were concentrated in the western part of North Korea, while CO and SO x were concentrated in North Hamgyong Province.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Advances in the Research on Brown Carbon Aerosols: Its Concentrations, Radiative Forcing, and Effects on Climate 棕碳气溶胶的浓度、辐射强迫及其对气候的影响研究进展
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.220336
Shuai Li, Hua Zhang, Zhili Wang, Yonghang Chen
{"title":"Advances in the Research on Brown Carbon Aerosols: Its Concentrations, Radiative Forcing, and Effects on Climate","authors":"Shuai Li, Hua Zhang, Zhili Wang, Yonghang Chen","doi":"10.4209/aaqr.220336","DOIUrl":"https://doi.org/10.4209/aaqr.220336","url":null,"abstract":"Brown carbon (BrC) are important light-absorbing carbonaceous aerosols in the atmosphere, and it is of great significance to study the climate effects of BrC for regional or global climate change. This paper reviews recent advances in research on the radiative forcing of BrC, its effects on temperature and precipitation, and snow/ice albedo. Recent research suggests that: (1) Climate effects of aerosols can be represented more accurately when including BrC absorption in climate models; the regions with the highest global mean surface BrC concentrations estimated by models are mostly Southeast Asia and South America (biomass burning), East Asia and northeast India (biofuel burning), and Europe and North America (secondary sources); estimates of BrC radiative forcing are quite erratic, with a range of around 0.03–0.57 W m –2 . (2) BrC heating lead to tropical expansion and a reduction in deep convective mass fluxes in the upper troposphere; cloud fraction and cloud type have a substantial impact on the heating rate estimates of BrC. The inclusion of BrC in the model results in a clear shift in the cloud fraction, liquid water path, precipitation, and surface flux. BrC heating decreases precipitation on a global scale, particularly in tropical regions with high convective and precipitation intensity, but different in some regions. (3) Uncertain optical properties of BrC, mixing ratio of radiation-absorbing aerosols in snow, snow grain size and snow coverage lead to higher uncertainties and lower confidence in the simulated distribution and radiative forcing of BrC in snow than BC. To reduce the uncertainty of its climate effects, future research should focus on improving model research, creating reliable BrC emission inventories, and taking into account the photobleaching and lense effects of BrC.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do the Street Sweeping and Washing Work for Reducing the Near-ground Levels of Fine Particulate Matter and Related Pollutants? 扫街和洗街对减少近地细颗粒物及相关污染物水平有效吗?
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.220338
Sheng-Lun Lin, Yunzhou Deng, M. Lin, Shih-Wei Huang
{"title":"Do the Street Sweeping and Washing Work for Reducing the Near-ground Levels of Fine Particulate Matter and Related Pollutants?","authors":"Sheng-Lun Lin, Yunzhou Deng, M. Lin, Shih-Wei Huang","doi":"10.4209/aaqr.220338","DOIUrl":"https://doi.org/10.4209/aaqr.220338","url":null,"abstract":"This research focuses on the properties of near-ground fine particles (PM 2.5 ), ultrafine particles (UFP), black carbon (BC), and polycyclic aromatic hydrocarbons (PAHs) in traffic area. The effects of street sweeping and washing on pollutant levels are evaluated. The X Road with sewage ditch was selected for the stationary samplings to determine the differences between the atmospheric PM 2.5 mass concentration, their composition, and potential sources before/after street cleaning processes, as well as the effect of the sewage existence. Results show that there were certain reductions of PM 2.5 after the street washing, especially for the road section with drainage ditch. The chemical mass balance model then pointed out the traffic contribution on PM 2.5 significantly reduced on the downwind site (from 25.7% to 16.5%). Besides, the spatial distribution of the near-ground PM 2.5 , UFP, BC, and PAHs were monitored by a mobile platform on an appropriate long, straight, and not heavily traffic Road Y. The monitoring took place at 1 h-before, during washing/sweeping, at 1 h-after, at 1 d-after, at 2 d-after three cleaning strategies, including only sweeping, washing-before-sweeping, and sweeping-before-washing. The monitoring then mapped out the hot spot distribution of pollutants. The PM 2.5 mass, UFP number, BC, and PAH concentrations before the street sweeping is 155 µ g m –3 , 1.2 × 104 # cm –3 , BC 3633 ng m –3 , and 36 ng m –3 . The UFP number concentration of suspended particles after street washing had a trend to reduce, avoided the deterioration of air quality. The strategy, “sweeping-before-washing”, was the best operation method among three to suppress the UFP number concentration by 42%, while all three strategies could effectively reduce the PAH levels. The primary pollutants are more easily reduced by the street-cleaning process, while the secondary one did not.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparison of Aerosol Acidity Based on a Direct Measurement Method and a Chemical Thermodynamic Model 基于直接测量法和化学热力学模型的气溶胶酸度比较
4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.230096
Qinping Song, Kazuo Osada
{"title":"Comparison of Aerosol Acidity Based on a Direct Measurement Method and a Chemical Thermodynamic Model","authors":"Qinping Song, Kazuo Osada","doi":"10.4209/aaqr.230096","DOIUrl":"https://doi.org/10.4209/aaqr.230096","url":null,"abstract":"Aerosol acidity is an important parameter in aerosol science that affects many chemical reactions in the atmosphere, and it is often estimated using chemical thermodynamic models. The Extended Aerosol Inorganic Model IV (E-AIM IV) is frequently used for this purpose; however, due to the limited number of available direct measurement methods of aerosol acidity, there is still a certain degree of uncertainty with regard to how accurately the simulation results reflect reality. In this study, a new pH testing paper method for the direct measurement of aerosol pH is used to measure the pH (pHmeas) of aerosol particle samples. Based on the data of the ionic constituents of the samples, the E-AIM IV model is then used to estimate aerosol pH (pHest). This study provides a comparison of pHmeas and pHest, revealing that the relationship is satisfactorily approximated by a simple linear regression of pHest = 1.05pHmeas + 0.38 (R2 = 0.90). The strong correlation and slope very close to unity indicate that the pH testing paper method corroborates the outputs of the E-AIM IV model.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135653426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized 基于微、纳米粉尘分离的室内外空气微生物群组成分析
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.210231
Jinho Yang, J. Seo, Y. Jee, Yoon Kim, J. Sohn
{"title":"Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized","authors":"Jinho Yang, J. Seo, Y. Jee, Yoon Kim, J. Sohn","doi":"10.4209/aaqr.210231","DOIUrl":"https://doi.org/10.4209/aaqr.210231","url":null,"abstract":"Airborne microorganisms are associated with human health and awareness of the important influence of nano-sized extracellular vesicles (EVs) on health has risen. Thus, we analyzed the micro-sized microbes (m-MBs) and nano-sized microbial EVs (n-MEVs) of outdoor and indoor air through a field study in Seoul, Korea. We conducted 16S rDNA-based metagenomic analysis of m-MBs and n-MEVs in outdoor airborne dust (OAD), indoor airborne dust (IAD), and indoor dust from carpets (IDC). The dominant taxa in OAD were altered depending upon the outside environment, such as sunny, haze, and rainy. Also, dominant taxa in IAD and IDC were changed depending on the outside environment. In addition, there were differences of microbiome composition and diversity between the m-MB and n-MEV in OAD, IAD, and IDC. m-MB in OAD were more correlated with that of IDC, whereas n-MEVs in OAD were more related to those in IAD. Thus, indoor bioaerosols can be affected by different source according to bioaerosol size. Additionally, risk of bioaerosols can be different according to dominant taxa, and therefore we suggested that further study for risk of dominant taxa according to environments is necessary. We suggested that nano-sized microbial EVs should be included as parameters to manage air quality","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"40 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70290545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implications of the Improvement in Atmospheric Fine Particles: A Case Study of COVID-19 Pandemic in Northern Taiwan 大气细颗粒物改善的意义——以台湾北部新冠肺炎大流行为例
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.220329
Chuanqun Huang, Yi-Ru Ko, Tzu-Chi Lin, Yu-Hsiang Cheng, Yu-Cheng Chen, Y. Ting
{"title":"Implications of the Improvement in Atmospheric Fine Particles: A Case Study of COVID-19 Pandemic in Northern Taiwan","authors":"Chuanqun Huang, Yi-Ru Ko, Tzu-Chi Lin, Yu-Hsiang Cheng, Yu-Cheng Chen, Y. Ting","doi":"10.4209/aaqr.220329","DOIUrl":"https://doi.org/10.4209/aaqr.220329","url":null,"abstract":"The outbreak of COVID-19 pandemic in northern Taiwan led to the implementation of Level 3 alert measures during 2021 and thereby impacted the air quality significantly, which provided an unprecedented opportunity to better understand the control strategies on air pollutants in the future. This study investigated the variations in sources, chemical characteristics and human health risks of PM2.5 comprehensively. The PM2.5 mass concentrations decreased from pre-alert to Level 3 alert by 49.4%, and the inorganic ions, i.e., NH4+, NO3- and SO42-, dropped even more by 71%, 90% and 52%, respectively. Nonetheless, organic matter (OM) and elemental carbon (EC) simply decreased by 36% and 13%, which caused the chemical composition of PM2.5 to change so that the carbonaceous matter in PM2.5 dominated instead of the inorganic ions. Correlation-based hierarchical clustering analysis further showed that PM2.5 was clustered with carbonaceous matter during the Level 3 alert, while that clustered with inorganic ions during both pre-alert and post-alert periods. Moreover, 6 sources of PM2.5 were identified by positive matrix factorization (PMF), in which secondary nitrate (i.e., aging traffic aerosols) exhibited the most significant decrease and yet primary traffic-related emissions, dominated by carbonaceous matter, changed insignificantly. This implied that secondary traffic-related aerosols could be easily controlled when traffic volume declined, while primary traffic source needs more efforts in the future, especially for the reduction of carbonaceous matter. Therefore, cleaner energy for vehicles is still needed. Assessments of both carcinogenic risk and non-carcinogenic risk induced by the trace elements in PM2.5 showed insignificant decrease, which can be attributed to the factories that did not shut down during Level 3 alert. This study serves as a metric to underpin the mitigation strategies of air pollution in the future and highlights the importance of carbonaceous matter for the reduction in PM2.5.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Particle Removal and Antibacterial of Nanofiber Doped with Metal and Ions Prepared by Electrospinning 静电纺丝法制备金属离子掺杂纳米纤维的微粒去除与抗菌
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.220342
Yinglu Jiang, RD Hope Tamboboy Cayron, Yu-Chen Cheng, Chang-Tang Chang
{"title":"Particle Removal and Antibacterial of Nanofiber Doped with Metal and Ions Prepared by Electrospinning","authors":"Yinglu Jiang, RD Hope Tamboboy Cayron, Yu-Chen Cheng, Chang-Tang Chang","doi":"10.4209/aaqr.220342","DOIUrl":"https://doi.org/10.4209/aaqr.220342","url":null,"abstract":"Due to the increase in human activities and the application of nanotechnology, people's exposure to nano and submicron particles is increasing. Conventional particle separation technologies, such as electrostatic precipitators, cyclone, wet washing, and filtration method, cannot work well. In addition, the fiber diameter and pore size of the traditional fiber filter material is too large, and the bulk density is difficult to control. Nanofiber membranes have a large surface area, small pore size and high porosity. The nanofiber membranes prepared by electrospinning technology are easy to intercept submicron and nanoparticles. Furthermore, the electrospinning technology is simple to operate, makes fibers of various materials easy, and is convenient for assembly and replacement. The most common bacteria are Escherichia coli, which harms the ecological environment and human health. Therefore, this study used bacteria and particles as the target pollutants and controlled by prepared nanostructured materials doped with metals and ions. In order to improve the treatment efficiency of particles and bacteria, this study added various metals and ions to nylon 6 nanofibers and explored the antibacterial and filterability of artificial fibrils. Different operation parameters, such as types of metal, types of ion, metal and concentration, and surface velocity, were also investigated to prepare various fibers to make the best performance fiber. In addition, the best-operating conditions could be obtained through a filtration test. Different salts, metals and metal ions with different concentrations, three metal oxides (TiO 2 , CeO 2 , and ZnO) and three ions (Ag + , K + , and Na + ) were used to test the filtration performance of various particle sizes for the best metal ion concentration, best filtration and bacterial removal performance. The experimental results show that the filtration efficiency of the composite fiber can reach 99%, and the composite fiber sprayed with a self-made antibacterial liquid has the best antibacterial ability.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic Degradation of Gaseous Acetone by Photocatalysts with Visible Light and their Potential Applications in Painting 可见光光催化降解气态丙酮及其在涂料中的潜在应用
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.220358
Yu-hua Li, Sheng-Hua Yang, C. Yuan, Huazhen Shen, C. Hung
{"title":"Photocatalytic Degradation of Gaseous Acetone by Photocatalysts with Visible Light and their Potential Applications in Painting","authors":"Yu-hua Li, Sheng-Hua Yang, C. Yuan, Huazhen Shen, C. Hung","doi":"10.4209/aaqr.220358","DOIUrl":"https://doi.org/10.4209/aaqr.220358","url":null,"abstract":"Volatile organic compounds (VOCs) are air pollutants associated with health problem. Paints mixed with photocatalytic (PC) materials are considered to be effective in the removal of VOCs. Therefore, this investigation aimed to produce a novel visible induced photocatalyst component in paint. The synthesized photocatalysts (i.e., Ag-TiO 2 and Fe-TiO 2 ) were self-prepared by sol-gel method and further used to produce paints. The effects of the paints on VOC (i.e., acetone) degradation under the irradiation of visible light were tested in a batch PC reactor and an environmental chamber. In order to evaluate the control effect of VOCs using the paint, a simulated test was conducted in a real room. The results of batch experiments showed that the degradation efficiencies of acetone by the paints were lower than that by the related photocatalysts. The paints made of 3% Fe-TiO 2 and 1% Ag-TiO 2 achieved the highest acetone degradation efficiency of 32.7 and 21.3%, respectively. The degradation test conducted in the environmental chamber indicated that the degradation efficiencies of acetone were 24.9, 46.2, and 32.4% for the paints made of TiO 2 , 3% Fe-TiO 2 and 1% Ag-TiO 2 , respectively. It was evidently provided that the paint made of 3% Fe-TiO 2 could effectively degrade organic pollutants in indoor environments.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Beehive Fireworks Festival Effect on the Nearby Atmospheric PM2.5 Level 蜂巢花炮节对附近大气PM2.5水平的影响
IF 4 4区 环境科学与生态学
Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI: 10.4209/aaqr.220389
Chih-Chung Lin, J. Tsai, Y. Hsieh, Shui-Jen Chen
{"title":"Beehive Fireworks Festival Effect on the Nearby Atmospheric PM2.5 Level","authors":"Chih-Chung Lin, J. Tsai, Y. Hsieh, Shui-Jen Chen","doi":"10.4209/aaqr.220389","DOIUrl":"https://doi.org/10.4209/aaqr.220389","url":null,"abstract":"Sudden short-term air pollution episode is now widely considered to harm human health. Previous research has found that firework activities rapidly raise the PM 2.5 level in the ambient air. This study investigates the influence of Yanshuei Beehive Fireworks Festival on atmospheric PM 2.5 from February 9 th to 12 th , 2017. The PM 2.5 samples were gathered at 8 sampling sites around Yanshuei and Xinying before (background (B)), trial (T), during (D), and after (A) beehive firework display periods during the Yanshuei Beehive Fireworks Festival. The temporospatial differences of atmospheric PM 2.5 before and after fireworks activities were explored. The atmospheric PM 2.5 level in major activity areas was significantly higher from the background level in the trial and festival periods, and even after the activity. The study revealed that PM 2.5 level reached the highest value of 327 µ g m –3 at the major activity areas, which is 6.6 and 5.9 times those at upwind (49.8 µ g m –3 ) and downwind (55.5 µ g m –3 ) sites, respectively. Additionally, the T/B and D/B ratios were 3.01 and 7.19, respectively, around the major activity area. Conversely, the wind rose diagrams and contour lines of PM 2.5 concentrations evaluated using Surfer 10.0 around the ambient air demonstrate that the atmospheric PM 2.5 levels at Yanshuei and Xinying were similar to each other (35–45 µ g m –3 ). However, the PM 2.5 hardly diffused to distant places and accumulated in the local area around the boundary between Yanshuei and Xinying during the Beehive Fireworks Festival, since the wind speed was usually low or even stayed calm. The iso-concentration contour maps show that K + , Cl – , Mg 2+ , and NO 3– are related to firework release during the festival.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信