Da-Ying Zhang, Jing Wu, Zehua Liu, Yueling Zhang, Lin Peng
{"title":"HCFC-141b (CH3CCl2F) Emission Estimates for 2000–2050 in Eastern China","authors":"Da-Ying Zhang, Jing Wu, Zehua Liu, Yueling Zhang, Lin Peng","doi":"10.4209/aaqr.230001","DOIUrl":"https://doi.org/10.4209/aaqr.230001","url":null,"abstract":"HCFC-141b (CH 3 CCl 2 F) has dual environmental impacts on ozone depletion and climate change, with the ozone depletion potential of 0.11 and the global warming potential of 782, and its emissions has attracted international attention. Under the control of the Montreal Protocol, China should phase out the production and consumption of HCFC-141b by 2030. This study firstly estimated the HCFC-141b emissions in eastern China based on the bottom-up method during 2000-2019. The results show that the HCFC-141b emissions in eastern China increased from 0.4 Gg yr –1 in 2000 to 7.1 Gg yr –1 in 2019, and there was a bank of 253.6 Gg in PU foam products in 2019, which may have an impact on the future HCFC-141b emissions. In addition, the HCFC-141b emissions were predicted in eastern China from 2020–2050 under the baseline scenario (BAU), the Montreal Protocol scenario (MP), and the accelerated phase-out scenario (AP), and the emission potential was analyzed. The results show that the HCFC-141b emissions increased rapidly under the BAU scenario, with the cumulative emissions of 1162.6 Gg in 2020–2050. Under the MP and AP scenarios, the cumulative HCFC-141b emission reduction potential from 2020 to 2050 will be 1002.1 Gg (equivalent to 110.2 Gg CFC-11-eq and 783.6 Tg CO 2 -eq) and 1034.8 Gg (equivalent to 113.8 Gg CFC-11-eq and 809.2 Tg CO 2 -eq), respectively. Compared with the MP scenario, under the AP scenario, eastern China will get an additional emission reduction potential of 32.7 Gg (equivalent to 3.6 Gg CFC-11-eq and 25.5 Tg CO 2 -eq) during 2020–2050, which will make greater contributions to protecting the ozone layer and mitigating climate change.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oyun-Erdene Otgonbyamba, G. Ganbat, Ser-Od Khuyag, Enkhjargal Altangerel, Bilguun Ganbold, Altangadas Bayanjargal, Altangerel Bat-Erdene, Bataa Chuluunbaatar, B. Badrakh, S. Batbaatar
{"title":"Health Risk Assessment of Volatile Organic Compounds for Children in Indoor Air, Ulaanbaatar, Mongolia","authors":"Oyun-Erdene Otgonbyamba, G. Ganbat, Ser-Od Khuyag, Enkhjargal Altangerel, Bilguun Ganbold, Altangadas Bayanjargal, Altangerel Bat-Erdene, Bataa Chuluunbaatar, B. Badrakh, S. Batbaatar","doi":"10.4209/aaqr.230028","DOIUrl":"https://doi.org/10.4209/aaqr.230028","url":null,"abstract":"This study presents levels of volatile organic compounds (VOCs) measured indoors for the first time in Ulaanbaatar, Mongolia, and quantifies the health risk for children emphasizing the urgent need to improve control for indoor VOCs sources. The 583 samples collected at 144 sites, including new buildings, old apartments, schools, workplaces, kindergartens, baishin, and Mongolian traditional gers , hospitals, schools, and shopping centers are analyzed. Formaldehyde was detected in 95.7% of the samples, while benzene was in 24.2%. The levels of benzene, toluene, and xylene in new and old buildings and apartments exceed the recommended values of AGÖF for volatile organic compounds in indoor air. The probabilistic Monte Carlo simulation method was used to estimate the risk exposure of four types of VOCs (benzene, formaldehyde, toluene, and m,p-xylene) to the health of the study population. The risk of cancer for benzene and formaldehyde is high in the age group of 7 months–4 years, m,p-xylene, and toluene show non-cancer risk in this age group.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of Air Pollutant Emissions from Heavy Industry Sector in North Korea","authors":"Y. Lee, Y. Kim, M. Yeo","doi":"10.4209/aaqr.230066","DOIUrl":"https://doi.org/10.4209/aaqr.230066","url":null,"abstract":"This study aims to estimate the amount of air pollutants emitted from heavy industrial facilities in North Korea. The heavy industry sector in North Korea was classified according to the South Korean definition, and the air pollutant emissions that it generated were estimated for 2017. Emissions of carbon monoxide (CO), nitrogen oxides (NO x ), and sulfur oxides (SO x ) by the heavy industry sector in North Korea were 22, 73, and 31%, respectively, of those in South Korea’ air pollutant emissions. Moreover, the CO, NO x , and SO x emissions comprised 0.6, 124, and 24%, respectively, of the total air pollutant emission in North Korea estimated from the Emissions Database for Global Atmospheric Research version 5.0 (EDGAR v5.0). Geographically, the NO x emissions were concentrated in the western part of North Korea, while CO and SO x were concentrated in North Hamgyong Province.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70297065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Aerosol Acidity Based on a Direct Measurement Method and a Chemical Thermodynamic Model","authors":"Qinping Song, Kazuo Osada","doi":"10.4209/aaqr.230096","DOIUrl":"https://doi.org/10.4209/aaqr.230096","url":null,"abstract":"Aerosol acidity is an important parameter in aerosol science that affects many chemical reactions in the atmosphere, and it is often estimated using chemical thermodynamic models. The Extended Aerosol Inorganic Model IV (E-AIM IV) is frequently used for this purpose; however, due to the limited number of available direct measurement methods of aerosol acidity, there is still a certain degree of uncertainty with regard to how accurately the simulation results reflect reality. In this study, a new pH testing paper method for the direct measurement of aerosol pH is used to measure the pH (pHmeas) of aerosol particle samples. Based on the data of the ionic constituents of the samples, the E-AIM IV model is then used to estimate aerosol pH (pHest). This study provides a comparison of pHmeas and pHest, revealing that the relationship is satisfactorily approximated by a simple linear regression of pHest = 1.05pHmeas + 0.38 (R2 = 0.90). The strong correlation and slope very close to unity indicate that the pH testing paper method corroborates the outputs of the E-AIM IV model.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135653426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheng-Lun Lin, Yunzhou Deng, M. Lin, Shih-Wei Huang
{"title":"Do the Street Sweeping and Washing Work for Reducing the Near-ground Levels of Fine Particulate Matter and Related Pollutants?","authors":"Sheng-Lun Lin, Yunzhou Deng, M. Lin, Shih-Wei Huang","doi":"10.4209/aaqr.220338","DOIUrl":"https://doi.org/10.4209/aaqr.220338","url":null,"abstract":"This research focuses on the properties of near-ground fine particles (PM 2.5 ), ultrafine particles (UFP), black carbon (BC), and polycyclic aromatic hydrocarbons (PAHs) in traffic area. The effects of street sweeping and washing on pollutant levels are evaluated. The X Road with sewage ditch was selected for the stationary samplings to determine the differences between the atmospheric PM 2.5 mass concentration, their composition, and potential sources before/after street cleaning processes, as well as the effect of the sewage existence. Results show that there were certain reductions of PM 2.5 after the street washing, especially for the road section with drainage ditch. The chemical mass balance model then pointed out the traffic contribution on PM 2.5 significantly reduced on the downwind site (from 25.7% to 16.5%). Besides, the spatial distribution of the near-ground PM 2.5 , UFP, BC, and PAHs were monitored by a mobile platform on an appropriate long, straight, and not heavily traffic Road Y. The monitoring took place at 1 h-before, during washing/sweeping, at 1 h-after, at 1 d-after, at 2 d-after three cleaning strategies, including only sweeping, washing-before-sweeping, and sweeping-before-washing. The monitoring then mapped out the hot spot distribution of pollutants. The PM 2.5 mass, UFP number, BC, and PAH concentrations before the street sweeping is 155 µ g m –3 , 1.2 × 104 # cm –3 , BC 3633 ng m –3 , and 36 ng m –3 . The UFP number concentration of suspended particles after street washing had a trend to reduce, avoided the deterioration of air quality. The strategy, “sweeping-before-washing”, was the best operation method among three to suppress the UFP number concentration by 42%, while all three strategies could effectively reduce the PAH levels. The primary pollutants are more easily reduced by the street-cleaning process, while the secondary one did not.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in the Research on Brown Carbon Aerosols: Its Concentrations, Radiative Forcing, and Effects on Climate","authors":"Shuai Li, Hua Zhang, Zhili Wang, Yonghang Chen","doi":"10.4209/aaqr.220336","DOIUrl":"https://doi.org/10.4209/aaqr.220336","url":null,"abstract":"Brown carbon (BrC) are important light-absorbing carbonaceous aerosols in the atmosphere, and it is of great significance to study the climate effects of BrC for regional or global climate change. This paper reviews recent advances in research on the radiative forcing of BrC, its effects on temperature and precipitation, and snow/ice albedo. Recent research suggests that: (1) Climate effects of aerosols can be represented more accurately when including BrC absorption in climate models; the regions with the highest global mean surface BrC concentrations estimated by models are mostly Southeast Asia and South America (biomass burning), East Asia and northeast India (biofuel burning), and Europe and North America (secondary sources); estimates of BrC radiative forcing are quite erratic, with a range of around 0.03–0.57 W m –2 . (2) BrC heating lead to tropical expansion and a reduction in deep convective mass fluxes in the upper troposphere; cloud fraction and cloud type have a substantial impact on the heating rate estimates of BrC. The inclusion of BrC in the model results in a clear shift in the cloud fraction, liquid water path, precipitation, and surface flux. BrC heating decreases precipitation on a global scale, particularly in tropical regions with high convective and precipitation intensity, but different in some regions. (3) Uncertain optical properties of BrC, mixing ratio of radiation-absorbing aerosols in snow, snow grain size and snow coverage lead to higher uncertainties and lower confidence in the simulated distribution and radiative forcing of BrC in snow than BC. To reduce the uncertainty of its climate effects, future research should focus on improving model research, creating reliable BrC emission inventories, and taking into account the photobleaching and lense effects of BrC.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implications of the Improvement in Atmospheric Fine Particles: A Case Study of COVID-19 Pandemic in Northern Taiwan","authors":"Chuanqun Huang, Yi-Ru Ko, Tzu-Chi Lin, Yu-Hsiang Cheng, Yu-Cheng Chen, Y. Ting","doi":"10.4209/aaqr.220329","DOIUrl":"https://doi.org/10.4209/aaqr.220329","url":null,"abstract":"The outbreak of COVID-19 pandemic in northern Taiwan led to the implementation of Level 3 alert measures during 2021 and thereby impacted the air quality significantly, which provided an unprecedented opportunity to better understand the control strategies on air pollutants in the future. This study investigated the variations in sources, chemical characteristics and human health risks of PM2.5 comprehensively. The PM2.5 mass concentrations decreased from pre-alert to Level 3 alert by 49.4%, and the inorganic ions, i.e., NH4+, NO3- and SO42-, dropped even more by 71%, 90% and 52%, respectively. Nonetheless, organic matter (OM) and elemental carbon (EC) simply decreased by 36% and 13%, which caused the chemical composition of PM2.5 to change so that the carbonaceous matter in PM2.5 dominated instead of the inorganic ions. Correlation-based hierarchical clustering analysis further showed that PM2.5 was clustered with carbonaceous matter during the Level 3 alert, while that clustered with inorganic ions during both pre-alert and post-alert periods. Moreover, 6 sources of PM2.5 were identified by positive matrix factorization (PMF), in which secondary nitrate (i.e., aging traffic aerosols) exhibited the most significant decrease and yet primary traffic-related emissions, dominated by carbonaceous matter, changed insignificantly. This implied that secondary traffic-related aerosols could be easily controlled when traffic volume declined, while primary traffic source needs more efforts in the future, especially for the reduction of carbonaceous matter. Therefore, cleaner energy for vehicles is still needed. Assessments of both carcinogenic risk and non-carcinogenic risk induced by the trace elements in PM2.5 showed insignificant decrease, which can be attributed to the factories that did not shut down during Level 3 alert. This study serves as a metric to underpin the mitigation strategies of air pollution in the future and highlights the importance of carbonaceous matter for the reduction in PM2.5.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70294499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-hua Li, Sheng-Hua Yang, C. Yuan, Huazhen Shen, C. Hung
{"title":"Photocatalytic Degradation of Gaseous Acetone by Photocatalysts with Visible Light and their Potential Applications in Painting","authors":"Yu-hua Li, Sheng-Hua Yang, C. Yuan, Huazhen Shen, C. Hung","doi":"10.4209/aaqr.220358","DOIUrl":"https://doi.org/10.4209/aaqr.220358","url":null,"abstract":"Volatile organic compounds (VOCs) are air pollutants associated with health problem. Paints mixed with photocatalytic (PC) materials are considered to be effective in the removal of VOCs. Therefore, this investigation aimed to produce a novel visible induced photocatalyst component in paint. The synthesized photocatalysts (i.e., Ag-TiO 2 and Fe-TiO 2 ) were self-prepared by sol-gel method and further used to produce paints. The effects of the paints on VOC (i.e., acetone) degradation under the irradiation of visible light were tested in a batch PC reactor and an environmental chamber. In order to evaluate the control effect of VOCs using the paint, a simulated test was conducted in a real room. The results of batch experiments showed that the degradation efficiencies of acetone by the paints were lower than that by the related photocatalysts. The paints made of 3% Fe-TiO 2 and 1% Ag-TiO 2 achieved the highest acetone degradation efficiency of 32.7 and 21.3%, respectively. The degradation test conducted in the environmental chamber indicated that the degradation efficiencies of acetone were 24.9, 46.2, and 32.4% for the paints made of TiO 2 , 3% Fe-TiO 2 and 1% Ag-TiO 2 , respectively. It was evidently provided that the paint made of 3% Fe-TiO 2 could effectively degrade organic pollutants in indoor environments.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70295059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hsueh-Hsing Lu, Ming-Chun Lu, Thi-Cuc Le, Zhiping An, D. Pui, Chuen-Jinn Tsai
{"title":"Continuous Improvements and Future Challenges of Air Pollution Control at an Advanced Semiconductor Fab","authors":"Hsueh-Hsing Lu, Ming-Chun Lu, Thi-Cuc Le, Zhiping An, D. Pui, Chuen-Jinn Tsai","doi":"10.4209/aaqr.230034","DOIUrl":"https://doi.org/10.4209/aaqr.230034","url":null,"abstract":"This study reviews the air pollution control strategy at an advanced semiconductor fab focusing on its continuous improvements and future challenges. A wide range of air pollutants is emitted from various sources classified as organic solvents, corrosive, toxic and combustible gases. This effective strategy employs a two-stage treatment method to comply with national emission regulations. Eight different types of local scrubbers (typ. gas flow rate: 0.3–2.0 CMM for the dry type or 60–83.3 CMM for the wet type) are used as pre-treatment devices at the first stage to remove specific target pollutants with high concentrations emitted from process chambers. Exhaust gases from local scrubbers are then grouped and further treated by central control facilities at the second stage, including the dual zeolite rotor-concentrator plus the thermal oxidizer for VOCs (typ. gas flow rate: 2500 CMM), the dual-central wet scrubbers (CWS) and alkaline CWS (typ. gas flow rate: 2000 CMM) for acid and alkaline gases, respectively. After the two-stage treatment, the removal efficiency of the VOCs can reach higher than 98.4%, surpassing the emission standard of 90%. The design parameters and operating conditions of the CWSs meet the criteria set in the emission standard for the semiconductor industry. In the future, CWS performance can further be improved by using advanced structured packing materials with larger specific surface areas to shorten the residence time and lower the chemical dosing amount and pressure drop while achieving higher removal efficiency for acid and alkaline gases at a reduced operating cost. The challenges to removing derived fine PM and white smoke still remain which can be resolved by using efficient control devices in the pre-and post-treatment stages, such as wet electrostatic precipitators. Finally, the by-product NO x can be minimized by using low-NO x burners or de-NO x control technologies in the future.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"40 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Mehmood, A. Hasnain, M. Luqman, Sohaib Muhammad, Narayan Babu Dhital, Arooba John, Maryam Iqbal, Amna Ejaz, Matiba Tufail, -. Harma, Hsi-Hsien Yang, M. U. Awan
{"title":"Assessment of Air Pollution Tolerance and Physicochemical Alterations of Alstonia Scholaris along Roadsides of Lahore, Pakistan","authors":"Z. Mehmood, A. Hasnain, M. Luqman, Sohaib Muhammad, Narayan Babu Dhital, Arooba John, Maryam Iqbal, Amna Ejaz, Matiba Tufail, -. Harma, Hsi-Hsien Yang, M. U. Awan","doi":"10.4209/aaqr.230038","DOIUrl":"https://doi.org/10.4209/aaqr.230038","url":null,"abstract":"Air pollution has become a severe urban environmental and health problem in several countries around the globe. Air pollutants also affect the physiological, morphological and biochemical processes in plants such as stomatal function, photosynthesis, respiration, leaf area, chlorophyll content, amino acid, pH and plant growth. Lahore is the second largest city in Pakistan facing tremendous stress of vehicle emission. This study evaluated the air pollution tolerance potential of Alstonia scholaris growing along the busiest roads of Lahore city using air pollution tolerance level and physicochemical alterations. Leaf area, ascorbic acid content (AAC), total chlorophyll (TCh) content, leaf extract pH, relative water content (RWC), and dust accumulation on leaf surface were measured for the roadside plantation and compared with the control plants (at background sites, 20 km away from polluted sites). Average value of AAC, TCh content, leaf extract pH, and RWC of A. scholaris in the roadside plantation were, 0.0380 mg g –1 , 0.0537 mg g –1 , 5.94 and 68.3%, respectively. The average value of dust accumulation on the leaf surface 0.381 mg mm –2 and leaf area 1482 mm 2 were higher in roadside than control site. APTI value (0.221) observed for A. scholaris in the roadside plantation was significantly higher than that at the control site (0.165). It is concluded that the air pollution tolerance ability of A. scholaris was higher along the polluted roads of Lahore than in the background control site. Leaf area, AAC, TCh and APTI decrease as traffic flows increase, indicating that the health of A. scholaris was affected by traffic flow.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70296917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}