中国东部季风区地形和天气系统对PM2.5的空间特征及影响

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Shengli Zhu, Zhaowen Wang, Kai Qu, Jun Xu, Ji Zhang, Haiyi Yang, Wenxin Wang, X. Sui, Minghua Wei, Houfeng Liu
{"title":"中国东部季风区地形和天气系统对PM2.5的空间特征及影响","authors":"Shengli Zhu, Zhaowen Wang, Kai Qu, Jun Xu, Ji Zhang, Haiyi Yang, Wenxin Wang, X. Sui, Minghua Wei, Houfeng Liu","doi":"10.4209/aaqr.220393","DOIUrl":null,"url":null,"abstract":"Based on the PM 2.5 concentration in the autumn and winter of 2015–2019, the characteristics of urban air pollution in the eastern monsoon region of China were discussed. The spatial distribution and interregional influence of fine particle pollution under different synoptic weather and topography in the eastern monsoon region of China were illustrated. According to synoptic systems, regional PM 2.5 pollution episodes were classified into three categories, including Uniform Pressure field (UP, 60.00%), Pre-High Pressure (PreHP, 30.91%) and Inverted-Trough (IT, 9.09%). The K-Means algorithm combined with the HYSPLIT backward trajectory clustering analysis indicated four clusters under UP controlled, and under weak pressure field was responsible for the elevation of PM 2.5 concentration, where the Beijing-Tianjin-Hebei and its surrounding areas were the most polluted region. For PreHP, four clusters eased after cold front. For IT, three clusters were ascertained, and the severe PM 2.5 pollution area was in the central and southern of the North China Plain. This study provided a scientific basis for the joint prevention of PM 2.5 pollution based on topographic and meteorological characteristics in Eastern China.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Characteristics and Influence of Topography and Synoptic Systems on PM2.5 in the Eastern Monsoon Region of China\",\"authors\":\"Shengli Zhu, Zhaowen Wang, Kai Qu, Jun Xu, Ji Zhang, Haiyi Yang, Wenxin Wang, X. Sui, Minghua Wei, Houfeng Liu\",\"doi\":\"10.4209/aaqr.220393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the PM 2.5 concentration in the autumn and winter of 2015–2019, the characteristics of urban air pollution in the eastern monsoon region of China were discussed. The spatial distribution and interregional influence of fine particle pollution under different synoptic weather and topography in the eastern monsoon region of China were illustrated. According to synoptic systems, regional PM 2.5 pollution episodes were classified into three categories, including Uniform Pressure field (UP, 60.00%), Pre-High Pressure (PreHP, 30.91%) and Inverted-Trough (IT, 9.09%). The K-Means algorithm combined with the HYSPLIT backward trajectory clustering analysis indicated four clusters under UP controlled, and under weak pressure field was responsible for the elevation of PM 2.5 concentration, where the Beijing-Tianjin-Hebei and its surrounding areas were the most polluted region. For PreHP, four clusters eased after cold front. For IT, three clusters were ascertained, and the severe PM 2.5 pollution area was in the central and southern of the North China Plain. This study provided a scientific basis for the joint prevention of PM 2.5 pollution based on topographic and meteorological characteristics in Eastern China.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220393\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220393","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于2015-2019年秋冬季PM 2.5浓度,探讨了中国东部季风区城市大气污染特征。分析了中国东部季风区不同天气和地形条件下细颗粒物污染的空间分布及其区域间影响。根据天气系统,将区域pm2.5污染事件划分为均匀压力场(UP, 60.00%)、预高压(PreHP, 30.91%)和倒槽(IT, 9.09%)三类。K-Means算法结合HYSPLIT反向轨迹聚类分析表明,在UP控制和弱压力场下,有4个聚类导致pm2.5浓度升高,其中京津冀及其周边地区是污染最严重的地区。对于PreHP,冷锋后有4个集群减弱。对于IT,确定了3个聚集区,PM 2.5严重污染区域位于华北平原中部和南部。该研究为基于中国东部地形和气象特征的pm2.5污染联合防治提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Characteristics and Influence of Topography and Synoptic Systems on PM2.5 in the Eastern Monsoon Region of China
Based on the PM 2.5 concentration in the autumn and winter of 2015–2019, the characteristics of urban air pollution in the eastern monsoon region of China were discussed. The spatial distribution and interregional influence of fine particle pollution under different synoptic weather and topography in the eastern monsoon region of China were illustrated. According to synoptic systems, regional PM 2.5 pollution episodes were classified into three categories, including Uniform Pressure field (UP, 60.00%), Pre-High Pressure (PreHP, 30.91%) and Inverted-Trough (IT, 9.09%). The K-Means algorithm combined with the HYSPLIT backward trajectory clustering analysis indicated four clusters under UP controlled, and under weak pressure field was responsible for the elevation of PM 2.5 concentration, where the Beijing-Tianjin-Hebei and its surrounding areas were the most polluted region. For PreHP, four clusters eased after cold front. For IT, three clusters were ascertained, and the severe PM 2.5 pollution area was in the central and southern of the North China Plain. This study provided a scientific basis for the joint prevention of PM 2.5 pollution based on topographic and meteorological characteristics in Eastern China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol and Air Quality Research
Aerosol and Air Quality Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
10.00%
发文量
163
审稿时长
3 months
期刊介绍: The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including: - Aerosol, air quality, atmospheric chemistry and global change; - Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure; - Nanoparticle and nanotechnology; - Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis; - Effects on the environments; - Air quality and human health; - Bioaerosols; - Indoor air quality; - Energy and air pollution; - Pollution control technologies; - Invention and improvement of sampling instruments and technologies; - Optical/radiative properties and remote sensing; - Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission; - Other topics related to aerosol and air quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信