Journal of experimental neurology最新文献

筛选
英文 中文
Investigation of B2-AR, TLR2, PICALM, and BDNF Gene Variants in Iranian Alzheimer’s Patients and Their Response to Rivastigmine 伊朗阿尔茨海默病患者B2-AR、TLR2、PICALM和BDNF基因变异及其对利匹的明反应的研究
Journal of experimental neurology Pub Date : 2021-06-30 DOI: 10.33696/neurol.2.041
Parvin Mohabattalab, F. R. Rad, H. Zamani, Fariba Shirvani, M. Zamani
{"title":"Investigation of B2-AR, TLR2, PICALM, and BDNF Gene Variants in Iranian Alzheimer’s Patients and Their Response to Rivastigmine","authors":"Parvin Mohabattalab, F. R. Rad, H. Zamani, Fariba Shirvani, M. Zamani","doi":"10.33696/neurol.2.041","DOIUrl":"https://doi.org/10.33696/neurol.2.041","url":null,"abstract":"Alzheimer’s disease (AD) is a devastating neurodegenerative disorder with polygenic and multifactorial inheritance, determined by progressive loss of memory and other cognitive functions. AD is characterized by hallmark pathological changes such as extracellular aggregation of amyloid β (Aβ), intraneuronal neurofibrillary tangles that lead to brain atrophy and loss of neural tissue [1,2]. Alzheimer’s disease is categorized according to the age of onset as early-onset (EOAD) or lateonset AD (LOAD) [3]. And, based on family history, it is classified as sporadic (SAD) or familial Alzheimer’s disease (FAD) [4]. There are various genetic and environmental factors involved in the pathogenesis of AD which makes the etiology of the disease complicated however, testing for Abstract","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42297986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary on Vulnerability and Resilience to Activity-Based Anorexia and the Role of Dopamine. 活动性厌食症的脆弱性和恢复力以及多巴胺的作用。
Journal of experimental neurology Pub Date : 2021-03-01
Jeff A Beeler, Nesha S Burghardt
{"title":"Commentary on Vulnerability and Resilience to Activity-Based Anorexia and the Role of Dopamine.","authors":"Jeff A Beeler,&nbsp;Nesha S Burghardt","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Activity-based anorexia (ABA) is a commonly used rodent model of anorexia nervosa that is based on observations made in rats decades ago. In recently published work, we describe using this paradigm to model vulnerability and resilience to anorexia nervosa in mice, where vulnerability is characterized by hyperactivity and life-threatening weight loss and resilience is characterized by adaptation and weight stabilization. Using genetically modified hyperdopaminergic mice, we also demonstrate that increased dopamine augments vulnerability to ABA. Here, we briefly review our findings and discuss how obtaining vulnerable and resilient phenotypes enhances utility of the ABA model for understanding the neurobiological basis of anorexia nervosa. We comment on our dopamine findings and close by discussing implications for clinical treatment.</p>","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":"21-28"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25517672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary: Use of BACTRAC Proteomic Database-Uromodulin Protein Expression During Ischemic Stroke. 评论:使用BACTRAC蛋白质组学数据库-缺血性卒中尿调蛋白表达。
Journal of experimental neurology Pub Date : 2021-03-01
Gabriella-Salome K Armstrong, Jacqueline A Frank, Christopher J McLouth, Ann Stowe, Jill M Roberts, Amanda L Trout, Justin F Fraser, Keith Pennypacker
{"title":"Commentary: Use of BACTRAC Proteomic Database-Uromodulin Protein Expression During Ischemic Stroke.","authors":"Gabriella-Salome K Armstrong,&nbsp;Jacqueline A Frank,&nbsp;Christopher J McLouth,&nbsp;Ann Stowe,&nbsp;Jill M Roberts,&nbsp;Amanda L Trout,&nbsp;Justin F Fraser,&nbsp;Keith Pennypacker","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Introduction: </strong>Uromodulin (UMOD) is a glycoprotein expressed by the epithelial cells of the thick ascending limb of Henle's loop in the kidney. Research has shown that increased uromodulin expression may be associated with lower risk of cardiovascular disease in adults. Utilizing the Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) (clinicaltrials.gov NCT03153683), a continuously enrolling tissue bank, we aimed to examine the associations between serum uromodulin, age, and high BMI (BMI>25) and its relationship to stroke in patients.</p><p><strong>Methods: </strong>Arterial blood distal and proximal to the thrombus was collected during a thrombectomy procedure using the BACTRAC protocol and sent to Olink (Boston, MA) to determine proteomic expression via proximity extension assay. Uromodulin expression was recorded and analyzed using two tailed T-tests and linear regressions.</p><p><strong>Results: </strong>The relationship between systemic and intracranial uromodulin, age, high BMI and hypertension were assessed. Systemic and intracranial uromodulin decreased with age (p<0.0001 and r<sup>2</sup>=0.343, p=0.0416 and r<sup>2</sup>=0.102) respectively. Systemic uromodulin expression increased with BMI>25 (p=0.014). Presence of hypertension decreased uromodulin's expression systemically (p=0.018) and intracranially (p=0.007).</p><p><strong>Conclusions: </strong>Uromodulin was increased significantly in overweight patients, decreased significantly in older patients, and decreased in patients with hypertension. The increase in uromodulin in people with high BMI could be a protective reaction of the kidney to worsening conditions that make ischemic stroke more likely, with a goal of delaying dangerous outcomes. The decreased expression of uromodulin in older adults could be associated with the decline of general kidney function that accompanies aging. Hypertension can contribute to an AKI by decreasing perfusion to the kidney, therefore decreasing kidney function and uromodulin production. Further analyses are needed to understand the role of uromodulin following ischemic stroke.</p>","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"2 1","pages":"29-33"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9246699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary: Use of BACTRAC Proteomic Database-Uromodulin Protein Expression During Ischemic Stroke 评论:使用BACTRAC蛋白质组学数据库-缺血性卒中尿调蛋白表达
Journal of experimental neurology Pub Date : 2021-02-27 DOI: 10.33696/NEUROL.2.032
Gabriella-Salome K. Armstrong, J. Frank, C. McLouth, A. Stowe, Jill M Roberts, A. Trout, J. Fraser, K. Pennypacker
{"title":"Commentary: Use of BACTRAC Proteomic Database-Uromodulin Protein Expression During Ischemic Stroke","authors":"Gabriella-Salome K. Armstrong, J. Frank, C. McLouth, A. Stowe, Jill M Roberts, A. Trout, J. Fraser, K. Pennypacker","doi":"10.33696/NEUROL.2.032","DOIUrl":"https://doi.org/10.33696/NEUROL.2.032","url":null,"abstract":"Introduction: Uromodulin (UMOD) is a glycoprotein expressed by the epithelial cells of the thick ascending limb of Henle’s loop in the kidney. Research has shown that increased uromodulin expression may be associated with lower risk of cardiovascular disease in adults. Utilizing the Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) (clinicaltrials.gov NCT03153683), a continuously enrolling tissue bank, we aimed to examine the associations between serum uromodulin, age, and high BMI (BMI>25) and its relationship to stroke in patients. Methods: Arterial blood distal and proximal to the thrombus was collected during a thrombectomy procedure using the BACTRAC protocol and sent to Olink (Boston, MA) to determine proteomic expression via proximity extension assay. Uromodulin expression was recorded and analyzed using two tailed T-tests and linear regressions. Results: The relationship between systemic and intracranial uromodulin, age, high BMI and hypertension were assessed. Systemic and intracranial uromodulin decreased with age (p<0.0001 and r2=0.343, p=0.0416 and r2=0.102) respectively. Systemic uromodulin expression increased with BMI>25 (p=0.014). Presence of hypertension decreased uromodulin’s expression systemically (p=0.018) and intracranially (p=0.007). Conclusions: Uromodulin was increased significantly in overweight patients, decreased significantly in older patients, and decreased in patients with hypertension. The increase in uromodulin in people with high BMI could be a protective reaction of the kidney to worsening conditions that make ischemic stroke more likely, with a goal of delaying dangerous outcomes. The decreased expression of uromodulin in older adults could be associated with the decline of general kidney function that accompanies aging. Hypertension can contribute to an AKI by decreasing perfusion to the kidney, therefore decreasing kidney function and uromodulin production. Further analyses are needed to understand the role of uromodulin following ischemic stroke.","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"2 1","pages":"29 - 33"},"PeriodicalIF":0.0,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43263330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Commentary on Vulnerability and Resilience to Activity-Based Anorexia and the Role of Dopamine 活动性厌食症的脆弱性和恢复力以及多巴胺的作用
Journal of experimental neurology Pub Date : 2021-02-25 DOI: 10.33696/NEUROL.2.031
J. Beeler, N. Burghardt
{"title":"Commentary on Vulnerability and Resilience to Activity-Based Anorexia and the Role of Dopamine","authors":"J. Beeler, N. Burghardt","doi":"10.33696/NEUROL.2.031","DOIUrl":"https://doi.org/10.33696/NEUROL.2.031","url":null,"abstract":"Activity-based anorexia (ABA) is a commonly used rodent model of anorexia nervosa that is based on observations made in rats decades ago. In recently published work, we describe using this paradigm to model vulnerability and resilience to anorexia nervosa in mice, where vulnerability is characterized by hyperactivity and life-threatening weight loss and resilience is characterized by adaptation and weight stabilization. Using genetically modified hyperdopaminergic mice, we also demonstrate that increased dopamine augments vulnerability to ABA. Here, we briefly review our findings and discuss how obtaining vulnerable and resilient phenotypes enhances utility of the ABA model for understanding the neurobiological basis of anorexia nervosa. We comment on our dopamine findings and close by discussing implications for clinical treatment.","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"2 1","pages":"21 - 28"},"PeriodicalIF":0.0,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47848015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Retroviral Elements in Human Evolution and Neural Development 逆转录病毒在人类进化和神经发育中的作用
Journal of experimental neurology Pub Date : 2021-02-22 DOI: 10.33696/NEUROL.2.028
Tongguang Wang, Tara T. Doucet-O’Hare, L. Henderson, Rachel P. M. Abrams, A. Nath
{"title":"Retroviral Elements in Human Evolution and Neural Development","authors":"Tongguang Wang, Tara T. Doucet-O’Hare, L. Henderson, Rachel P. M. Abrams, A. Nath","doi":"10.33696/NEUROL.2.028","DOIUrl":"https://doi.org/10.33696/NEUROL.2.028","url":null,"abstract":"Human embryogenesis and the development of its most unique product, the human brain, are believed to be precisely regulated by factors adopted during human evolution that differentiate us from other species. Nevertheless, increasing evidence shows an unthinkable “alien” factor may have contributed to the process. Pervasive horizontal gene transfer between species mediated by retroviruses is such a defining factor of evolution [1]. Retroviral infections occurred in germline cells and were able to transfer the genomic codes vertically from parent to offspring. These genes once integrated into the host chromosome, can get dispersed and exist in multiple mutated copies throughout the host genome. As a result, retroviral genes and other retro elements contribute to about 50% of the human genome. Of these, 20% belong to the group of LINEs and over 8% consists of HERVs which are relatively intact since they were acquired more recently [2]. From an evolutionary point of view, these retroviral elements have at least a few known functions that could benefit the human host. Generally, the vast amount of such “relic” genes in the genome can provide a specific buffer zone to preserve functional genes against further viral infections and other gene mutation causing events. The similarities of gene sequences and functions provide a more specific competition to limit further similar viral infections [3]. These functions are evidenced by the abnormal shares of mutations and translocations within the retroviral elements compared with other functional genes. Other functions of the HERV proteins lent to the host include the immune regulatory functions, such as an immunosuppressive function mediated by a domain located in the transmembrane subunit of the HERV-W [4,5]. In the present review, we focus on the effects of retroviral elements on human embryogenesis and neural development.","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"2 1","pages":"1 - 9"},"PeriodicalIF":0.0,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44820069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cathepsin D: A Candidate Link between Amyloid β-protein and Tauopathy in Alzheimer Disease 组织蛋白酶D:淀粉样蛋白β-蛋白与阿尔茨海默病tau病变之间的候选联系
Journal of experimental neurology Pub Date : 2021-02-04 DOI: 10.33696/NEUROL.2.029
Caitlin N Suire, M. Leissring
{"title":"Cathepsin D: A Candidate Link between Amyloid β-protein and Tauopathy in Alzheimer Disease","authors":"Caitlin N Suire, M. Leissring","doi":"10.33696/NEUROL.2.029","DOIUrl":"https://doi.org/10.33696/NEUROL.2.029","url":null,"abstract":"Alzheimer disease (AD) is a debilitating neurodegenerative disorder characterized by extracellular deposition of the amyloid β-protein (Aβ) and intraneuronal accumulation of the microtubule-associated protein, tau. Despite a wealth of experimental and genetic evidence implicating both Aβ and tau in the pathogenesis of AD, the precise molecular links between these two pathological hallmarks have remained surprisingly elusive. Here, we review emerging evidence for a critical nexus among Aβ, tau, and the lysosomal protease cathepsin D (CatD) that we hypothesize may play a pivotal role in the etiology of AD. CatD degrades both Aβ and tau in vitro, but the in vivo relevance of this lysosomal protease to these principally extracellular and cytosolic proteins, respectively, had remained undefined for many decades. Recently, however, our group found that genetic deletion of CatD in mice results in dramatic accumulation of Aβ in lysosomes, revealing that Aβ is normally trafficked to lysosomes in substantial quantities. Moreover, emerging evidence suggests that tau is also trafficked to the lysosome via chaperone-mediated autophagy and other trafficking pathways. Thus, Aβ, tau and CatD are colocalized in the lysosome, an organelle that shows dysfunction early in AD pathogenesis, where they can potentially interact. Notably, we discovered that Aβ42—the Aβ species most strongly linked to AD pathogenesis—is a highly potent, low-nanomolar, competitive inhibitor of CatD. Taking these observations together, we hypothesize that Aβ42 may trigger tauopathy by competitive inhibition of CatD-mediated degradation of tau—pathogenic forms of tau, in particular. Herein, we review the evidence supporting this hypothesis and explore the implications for the molecular pathogenesis of AD. Future research into these novel mechanistic links among Aβ, tau and CatD promises to expand our understanding of the etiology of AD and could potentially lead to novel therapeutic approaches for combatting this devastating disease of brain and mind.","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"2 1","pages":"10 - 15"},"PeriodicalIF":0.0,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42641129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Cathepsin D: A Candidate Link between Amyloid β-protein and Tauopathy in Alzheimer Disease. 组织蛋白酶D:淀粉样蛋白β-蛋白与阿尔茨海默病tau病变之间的候选联系。
Journal of experimental neurology Pub Date : 2021-01-01
Caitlin N Suire, Malcolm A Leissring
{"title":"Cathepsin D: A Candidate Link between Amyloid β-protein and Tauopathy in Alzheimer Disease.","authors":"Caitlin N Suire,&nbsp;Malcolm A Leissring","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alzheimer disease (AD) is a debilitating neurodegenerative disorder characterized by extracellular deposition of the amyloid β-protein (Aβ) and intraneuronal accumulation of the microtubule-associated protein, tau. Despite a wealth of experimental and genetic evidence implicating both Aβ and tau in the pathogenesis of AD, the precise molecular links between these two pathological hallmarks have remained surprisingly elusive. Here, we review emerging evidence for a critical nexus among Aβ, tau, and the lysosomal protease cathepsin D (CatD) that we hypothesize may play a pivotal role in the etiology of AD. CatD degrades both Aβ and tau <i>in vitro</i>, but the <i>in vivo</i> relevance of this lysosomal protease to these principally extracellular and cytosolic proteins, respectively, had remained undefined for many decades. Recently, however, our group found that genetic deletion of CatD in mice results in dramatic accumulation of Aβ in lysosomes, revealing that Aβ is normally trafficked to lysosomes in substantial quantities. Moreover, emerging evidence suggests that tau is also trafficked to the lysosome via chaperone-mediated autophagy and other trafficking pathways. Thus, Aβ, tau and CatD are colocalized in the lysosome, an organelle that shows dysfunction early in AD pathogenesis, where they can potentially interact. Notably, we discovered that Aβ42-the Aβ species most strongly linked to AD pathogenesis-is a highly potent, low-nanomolar, competitive inhibitor of CatD. Taking these observations together, we hypothesize that Aβ42 may trigger tauopathy by competitive inhibition of CatD-mediated degradation of tau-pathogenic forms of tau, in particular. Herein, we review the evidence supporting this hypothesis and explore the implications for the molecular pathogenesis of AD. Future research into these novel mechanistic links among Aβ, tau and CatD promises to expand our understanding of the etiology of AD and could potentially lead to novel therapeutic approaches for combatting this devastating disease of brain and mind.</p>","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":" ","pages":"10-15"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7929084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25432524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutaminergic Signaling in the Nucleus Accumbens Modulates the Behavioral Response to Acute and Chronic Methylphenidate 伏隔核谷氨酰胺能信号调节对急性和慢性哌甲酯的行为反应
Journal of experimental neurology Pub Date : 2021-01-01 DOI: 10.33696/NEUROL.2.036
Nicholas King, Thomas Mink, N. Kharas, N. Dafny
{"title":"Glutaminergic Signaling in the Nucleus Accumbens Modulates the Behavioral Response to Acute and Chronic Methylphenidate","authors":"Nicholas King, Thomas Mink, N. Kharas, N. Dafny","doi":"10.33696/NEUROL.2.036","DOIUrl":"https://doi.org/10.33696/NEUROL.2.036","url":null,"abstract":"Methylphenidate (MPD) is a psychostimulant that acts on the CNS to produce behavioral effects. The nucleus accumbens (NAc) is involved in this, however the role of the NAc’s glutaminergic system in the behavioral response to MPD has not been studied. Three groups of animals were used: control, sham NAc lesions, and glutaminergic-specific (ibotenic acid toxin) NAc lesion groups. On experimental day (ED) 1, all groups received saline. On ED 2, NAc surgeries took place, followed by a 5-day recovery period (ED 3-7). On ED 8 a post-surgical baseline recording was obtained. Groups then received six daily MPD 2.5 mg/kg injections (ED 9-14) to produce a chronic effect of MPD exposure, behavioral sensitization, then three days of washout (ED 15-17), followed by a re-challenge with 2.5 mg/ kg MPD on ED 18. Locomotive activity was recorded for 60 minutes after each injection. All groups showed an increase in behavioral activity following acute MPD exposure, and developed behavioral sensitization following chronic MPD exposure that was maintained after washout. Compared to NAc intact controls and sham lesions, glutaminergic selective ibotenic acid lesions to the NAc significantly (P<0.05) attenuated the horizontal activity response to both acute and chronic MPD. Glutaminergic selective ibotenic acid lesions to the NAc also resulted in further significant (P<0.05) augmentation of stereotypic activity above the control group. The glutaminergic lesion failed to modulate total distance traveled. This indicates that glutaminergic signaling in the NAc modulates behavioral activity circuits in the NAc differently, and suggests a role in the volitional response to MPD.","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69670511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Combined Antiseizure Efficacy of Cannabidiol and Clonazepam in a Conditional Mouse Model of Dravet Syndrome. 大麻二酚和氯硝西泮联合抗惊厥对条件性小鼠Dravet综合征的影响。
Journal of experimental neurology Pub Date : 2021-01-01 DOI: 10.33696/neurol.2.040
Shu-Hui Chuang, Ruth E Westenbroek, Nephi Stella, William A Catterall
{"title":"Combined Antiseizure Efficacy of Cannabidiol and Clonazepam in a Conditional Mouse Model of Dravet Syndrome.","authors":"Shu-Hui Chuang,&nbsp;Ruth E Westenbroek,&nbsp;Nephi Stella,&nbsp;William A Catterall","doi":"10.33696/neurol.2.040","DOIUrl":"https://doi.org/10.33696/neurol.2.040","url":null,"abstract":"<p><p>Dravet Syndrome (DS) is a severe childhood epilepsy caused by heterozygous loss-of-function mutations in the <i>SCN1A</i> gene encoding brain type-I voltage-gated sodium channel Na<sub>v</sub>1.1. DS is a devastating disease that typically begins at six to nine months of age. Symptoms include recurrent intractable seizures and premature death with severe neuropsychiatric comorbidities, including hyperactivity, sleep disorder, anxiety-like behaviors, impaired social interactions, and cognitive deficits. There is an urgent unmet need for therapeutic approaches that control and cure DS, as available therapeutic interventions have poor efficacy, intolerance, or other side effects. Here we investigated the therapeutic potential of combining the benzodiazepine clonazepam (CLZ) with the nonpsychotropic phytocannabinoid cannabidiol (CBD) against thermally induced febrile seizures in a conditional mouse model of DS. Our results show that a low dose of CLZ alone or combined with CBD elevated the threshold temperature for the thermal induction of seizures. Combination of CLZ with CBD significantly reduced seizure duration compared to the vehicle or CLZ alone, but did not affect seizure severity, indicating potential additive actions of CLZ and CBD on the duration of seizures. Our findings provide preclinical evidence supporting combination therapy of CLZ and CBD for treatment of febrile seizures in DS.</p>","PeriodicalId":73744,"journal":{"name":"Journal of experimental neurology","volume":"2 2","pages":"81-85"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39223203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信