{"title":"Gesture Recognition and Master-slave Control of a Manipulator Based On Semg and CNN-GRU","authors":"Zhaojie Ge, Zhile Wu, Xu Han, Ping Zhao","doi":"10.1115/1.4056325","DOIUrl":"https://doi.org/10.1115/1.4056325","url":null,"abstract":"\u0000 Surface electromyography signal (sEMG) is the bioelectric signal accompanied by muscle contraction. For masterslave manipulation scenario such as patients with prosthetic hands, their upper limb sEMG signals can be collected and corresponded to the patient' s gesture intention. Therefore, using a slave manipulator that integrated with the sEMG signal recognition module, the master side could control it to make gestures and meet their needs of daily life. In this paper, gesture recognition is carried out based on sEMG and deep learning, and the master-slave control of manipulator is realized. According to the results of training, the network model with the highest accuracy of gesture classification and recognition can be obtained. Then, combined with the integrated manipulator, the control signal of the manipulator corresponding to the gesture is sent to the control module of the manipulator. In the end, a prototype system is built and the master-slave control of the manipulator using the sEMG signal is realized.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79808010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Matrix-Patterned Micromarkers for Tracking Local Contractile Movements of Myotubes Cultured on Thin-Film Scaffold","authors":"S. Hashimoto","doi":"10.1115/1.4056779","DOIUrl":"https://doi.org/10.1115/1.4056779","url":null,"abstract":"\u0000 To measure the distribution of local contractile movements in the layer of the myotubes, the movement of the matrix pattern of micro-markers placed on the back surface of the myotube-attached thin film has been tracked in vitro. A matrix pattern of micromarkers (diameter: 4 μm, height: 2 μm, interval: 30 μm) was fabricated on the back of a polydimethylsiloxane thin film (thickness: 6 μm) using photolithography. Mouse myoblasts were seeded on the front of the thin film and cultured for 10 days to differentiate into myotubes. Periodic electrical pulses (amplitude 2 V, pulse period 0.5 s, pulse width 1 ms) were applied between the electrodes of titanium wires immersed in the medium. Movements of both myotubes and markers were observed simultaneously with an optical microscope. Experimental results indicate that the motion distribution of each marker is related to the local periodic motion of the myotube layer. Thin films with matrix-patterned micromarkers fabricated on the back side allow in vitro analysis of the distribution of local repetitive contractile movements in the myotube layer.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76091706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Mechanisms Underlying the Effect of Paeoniae Radix Rubra On Sepsis-Induced Coagulopathy: A Network Pharmacology and Molecular Docking Approach","authors":"Shan Gao, Dongsheng Wang","doi":"10.1115/1.4056104","DOIUrl":"https://doi.org/10.1115/1.4056104","url":null,"abstract":"\u0000 To investigate the effective components and underlying mechanism of Paeoniae radix rubra (PRR) in treating sepsis-induced coagulopathy (SIC) on the basis of network pharmacology and molecular docking approaches. At present, no therapeutic agent has been approved for the treatment of SIC. Identifying drugs for SIC from Chinese medicine is an encouraging research direction. The predicted targets and effective components of PRR were identified by analysis of the TCMSP database. Bioinformatics databases were employed to identify the disease targets of SIC. These key targets were then uploaded to the STRING database to generate protein-protein interaction networks. The ORG package in R v4.1.2 software was applied for functional and pathway enrichment analyses of the key targets. Finally, discovery studio software was used to perform docking analyses of key targets and effective components. Nine chemically active components and eighty-four common targets associated with drugs and SIC were identified. PPI network analysis identified several key targets. Further analysis identified enrichment in several signaling pathways; these changes could exert influence on a number of biological processes, including responses to xenobiotic stimuli, oxidative stress, molecules of bacterial origin, thus playing an anti-SIC pharmacological role. According to molecular docking results, these key targets had strong binding affinity to the active components. PRR can contribute to SIC by medicating core target genes (e.g., CASP3, PTGS2, TP53, AKT1, MMP9, TNF, JUN, IL6, and CXCL8), and regulating multiple key pathways (e.g., the Lipid and atherosclerosis pathway).","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75470827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Obstacle Avoidance for Omnidirectional Mobile Robot Using SLAM","authors":"V. Nandikolla, Bryan Ghoslin","doi":"10.1115/1.4055689","DOIUrl":"https://doi.org/10.1115/1.4055689","url":null,"abstract":"\u0000 In the field of mobile robotics, Simultaneous Localization and Mapping (SLAM) is an algorithmic approach to the computational problem of creating and updating a map of an environment while simultaneously keeping track of where the robot is within the environment. Applications of a SLAM algorithm are important for autonomous mobile systems to traverse an environment while avoiding obstacles and accurately achieving designated goal destinations. This paper presents the design of a SLAM-driven controller for a semi-autonomous omnidirectional mobile robot. Input to the system comes from a Brain Computer Interface in the form of simple driving commands or a goal destination as decided by the user. Due to latency issues of reacting and responding in real time, the system must safely navigate following the last given commands until it runs out of free space, reaches a goal designation, or receives a new command. The robotic system utilizes a three-wheeled robot kit with an upgraded sensor system. The Intel RealSense Depth Camera D435 and two lidar sensors are utilized to construct a full 360° field of view. The SLAM algorithm and system controllers are developed using the Robot Operating System (ROS). The controllers are developed and tested within Gazebo, which is a physics simulation engine utilized for rapid prototyping. Testing was performed to validate controller performance when given varying commands as well as performing long distance path planning and obstacle avoidance. The system was often capable of achieving its goal destinations with a small error of around 3% or less though the error was found to increase with the more commands the system processed.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89588208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relations of Radial Vibration of the Arterial Wall to Pulsatile Parameters in Blood Flow for Extraction of Arterial Indices","authors":"Z. Hao","doi":"10.1115/1.4055390","DOIUrl":"https://doi.org/10.1115/1.4055390","url":null,"abstract":"\u0000 Given the wide utility of radial vibration of the arterial wall for clinical values, this paper presents a theoretical study on the relations of radial vibration of the arterial wall to pulsatile parameters in blood flow. Pulse wave propagation in an artery is formulated as a combination of the governing equations of blood flow and the arterial wall and no-slip conditions at the blood-wall interface, and is analyzed to obtain the wave velocity and the theoretical expressions for blood flow rate and radial wall displacement in terms of pulsatile pressure. With the harmonics of a pulse signal, theoretical relations of radial vibration of the arterial wall to pulsatile parameters in blood flow are derived under two conditions: without and with wave reflection. These theoretical relations identify the assumptions for the simplified relations employed in the utility of radial vibration of the arterial wall for clinical values. With the arterial wall treated as a unit-mass vibration system, these simplified relations are utilized for extraction of arterial indices from radial vibration of the arterial wall. Other applications of such relations for clinical values are discussed, and the interaction between the arterial wall and blood flow is further revealed from the perspective of energy and 1D wave equations. With harmonics and wave reflection considered, the derived theoretical expressions for radial wall vibration, pulsatile parameters in blood flow, and the relations between them provide a theoretical guidance for improving their interpretation for clinical values with clearly-defined physiological implications and assumptions.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83068496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Modelling of Conical-Shaped Bone Marrow Biopsy Needle Into Multilayer Iliac Crest Model","authors":"R. Nadda, R. Repaka, A. Sahani","doi":"10.1115/1.4055221","DOIUrl":"https://doi.org/10.1115/1.4055221","url":null,"abstract":"\u0000 Bone marrow biopsy (BMB) is a standard technique used in various therapies, research, diagnosis, and prognosis. The extensive forces during biopsy result in unnecessary stress concentrations that are primarily hazardous to weak end bones. To enhance protection and to better identify the risks of bone biopsy, it is essential to understand and predict the interaction of needles with multiple layers of skin and bone. The present investigation aimed to find out the numerical evaluation of forces involved in the insertion and extraction of the needle into multilayer iliac crest model. The insertion and extraction forces have been studied at different diameters of biopsy needles up to a depth of 15.35 mm and insertion speeds in the range of 1 mm/sec - 10 mm/sec. The results showed that the insertion and extraction forces vary according to the needle diameter and relative velocity among the needle and tissue layers. A linear force vs. depth relationship has been obtained in the preliminary phase, and as the depth of insertion increases, the forces increase non-linearly. At the end phase of penetration, the forces augmented more rapidly at a low insertion rate compared to the high insertion rate.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83222451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Synthetic Vocal Fold Models for Glottal Closure.","authors":"Cassandra J Taylor, Scott L Thomson","doi":"10.1115/1.4054194","DOIUrl":"https://doi.org/10.1115/1.4054194","url":null,"abstract":"<p><p>Synthetic, self-oscillating models of the human vocal folds are used to study the complex and inter-related flow, structure, and acoustical aspects of voice production. The vocal folds typically collide during each cycle, thereby creating a brief period of glottal closure that has important implications for flow, acoustic, and motion-related outcomes. Many previous synthetic models, however, have been limited by incomplete glottal closure during vibration. In this study, a low-fidelity, two-dimensional, multilayer finite element model of vocal fold flow-induced vibration was coupled with a custom genetic algorithm optimization code to determine geometric and material characteristics that would be expected to yield physiologically-realistic frequency and closed quotient values. The optimization process yielded computational models that vibrated with favorable frequency and closed quotient characteristics. A tradeoff was observed between frequency and closed quotient. A synthetic, self-oscillating vocal fold model with geometric and material properties informed by the simulation outcomes was fabricated and tested for onset pressure, oscillation frequency, and closed quotient. The synthetic model successfully vibrated at a realistic frequency and exhibited a nonzero closed quotient. The methodology described in this study provides potential direction for fabricating synthetic models using isotropic silicone materials that can be designed to vibrate with physiologically-realistic frequencies and closed quotient values. The results also show the potential for a low-fidelity model optimization approach to be used to tune synthetic vocal fold model characteristics for specific vibratory outcomes.</p>","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132011/pdf/jesmdt-21-1052_031106.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40503542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elias Sundström, Rehab Talat, Ahmad R Sedaghat, Sid Khosla, Liran Oren
{"title":"Computational Modeling of Nasal Drug Delivery Using Different Intranasal Corticosteroid Sprays for the Treatment of Eustachian Tube Dysfunction.","authors":"Elias Sundström, Rehab Talat, Ahmad R Sedaghat, Sid Khosla, Liran Oren","doi":"10.1115/1.4053907","DOIUrl":"https://doi.org/10.1115/1.4053907","url":null,"abstract":"<p><p>Eustachian tube dysfunction (ETD) is a common otolaryngologic condition associated with decreased quality of life. The first-line treatment of ETD is intranasal corticosteroid sprays (INCS). Computational fluid dynamics (CFD) was used to study particle deposition on the Eustachian tube (ET) using two commercial INCS (Flonase and Sensimist). Simulations also considered the effects of nostril side, insertion depth, insertion angle, cone spray angle, inhaling rates, wall impingement treatment, and fluid film. Flonase and Sensimist produced different particle size distributions and sizes. Sensimist droplets are smaller, less sensitive to asymmetry in nostrils anatomy and variation in insertion angle, and therefore can reach the posterior nasopharynx more readily. Flonase produces larger particles with greater inertia. Its particles deposition is more sensitive to intrasubject variation in nasal anatomy and insertion angles. The particle deposition on the ET was sensitive to the wall impingement model. The deposition on the ET was insignificant with adherence only <0.15% but increased up to 1-4% when including additional outcomes rebound and splash effects when droplets impact with the wall. The dose redistribution with the fluid film is significant but plays a secondary effect on the ET deposition. Flonase aligned parallel with the hard palate produced 4% deposition efficiency on the ET, but this decreased <0.14% at the higher insertion angle. INCS with larger droplet sizes with a small insertion angle may be more effective at targeting droplet deposition on the ET opening.</p>","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996241/pdf/jesmdt-21-1053_031103.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40503544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rieko Yamamoto, S. Itami, Masashi Kawabata, T. Shiraishi
{"title":"Effectiveness of an Intelligent Foot Orthosis in Lateral Fall Prevention","authors":"Rieko Yamamoto, S. Itami, Masashi Kawabata, T. Shiraishi","doi":"10.1115/1.4055040","DOIUrl":"https://doi.org/10.1115/1.4055040","url":null,"abstract":"\u0000 The aim of this study was to validate the effectiveness of the newly developed Intelligent Foot Orthosis (IFO) at preventing lateral falls. The IFO is a wearable fall prevention system based on using a small magnetorheological brake to control the height of the lateral sole. Experiments were performed to compare the walking motions on a lateral slope under four conditions: without IFO, with IFO current-OFF, with IFO current-ON, and with IFO control-ON. The mediolateral center of gravity and center of pressure horizontal distance (ML COG-COP HD) was measured in three-dimensional motion analysis to represent the change in posture on the frontal plane. To observe the corresponding muscular activity, surface electromyography (EMG) was performed to obtain the mean and peak root mean square (RMS) for the tibia anterior (TA) and peroneus longus (PL) in the first half of the stance phase when the IFO applied control. In the results, ML COG-COP HD increased significantly under the \"with IFO control-ON\" compared to the \"without IFO\" and \"with IFO current-ON\" condition. The mean RMS of the TA was significantly decreased under the \"with IFO current-ON\" and \"with IFO control-ON\" conditions compared to the \"without IFO\" condition. These results demonstrate that the posture moved away from the lateral fall direction primarily due to IFO assistance rather than muscular activity, which would be a consequence of human postural control. Thus, the IFO does appear to help prevent lateral falls.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82764126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laser Ablation Tomography for Rapid 3D Tissue Imaging and Analysis","authors":"Asheesh Lanba, B. Hall, W. Huff","doi":"10.1115/1.4054882","DOIUrl":"https://doi.org/10.1115/1.4054882","url":null,"abstract":"\u0000 Laser ablation tomography (LATscan) produces 3D tissue models at micron-scale resolution within a few minutes, being amenable to high-throughput applications. RGB images obtained from LATscan allow for enhanced and accurate feature segmentation and quantification. The technology uses an ultrafast, ultraviolet pulsed laser to continually ablate a sample as it is fed into the laser ablation plane. The ultrafast nature of the laser pushes the process into being athermal, minimizing structural damage to the material being imaged. The surfaces are imaged at the ablation plane. Precise motion control allows for sub-micron separation between consecutive images. The ablation results in color images due to the ultraviolet laser inducing multi-spectral fluorescence. The LATscan system can also be programmed to allow for co-registration of cross-sections under different lighting conditions. The images are then stacked, further processed and reconstructed into volume renderings with a voxel size that can go down to 0.2 µm3 for further analysis and virtual dissection. Image processing allows for the 3D visualization and quantification of desired anatomy. LATscan has been successfully applied in the fields of plant science, entomology and materials science. It shows great promise for biomedical imaging and tissue analysis, and this paper presents a few results from the LATscan imaging of murine tissue. Various murine organs have been imaged, including the gut, kidney, and brain (inside the skull). The imaging and analysis combined have the potential to provide pathologists, researchers and diagnosticians with insights and solutions not available to them before.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90110676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}