Ajam Uddin, Shimul Halder, Nandita Deb, Harinarayan Das, Madhabi Lata Shuma, Ikramul Hasan, Manik Chandra Shill, Syed Shabbir Haider
{"title":"Impact of Methods of Preparation on Mechanical Properties, Dissolution Behavior, and Tableting Characteristics of Ibuprofen-Loaded Amorphous Solid Dispersions.","authors":"Ajam Uddin, Shimul Halder, Nandita Deb, Harinarayan Das, Madhabi Lata Shuma, Ikramul Hasan, Manik Chandra Shill, Syed Shabbir Haider","doi":"10.1155/2024/2303942","DOIUrl":"10.1155/2024/2303942","url":null,"abstract":"<p><p>This study aims to improve the biopharmaceutical, mechanical, and tableting properties of a poorly soluble drug, ibuprofen (IBP), by preparing amorphous solid dispersion (ASD) followed by a sustained-release tablet formulation. A suitable polymer to develop an ASD system was chosen by utilizing the apparent solubility of IBP in various polymer solutions. ASDs containing various ratios of IBP and selected polymer were prepared by the melt fusion (MF) method. ASD containing optimized drug-polymer ratio prepared by freeze-drying (FD) method was characterized and compared physicochemically. The solubility of IBP in water increased 28-fold and 35-fold when formulated as ASD by MF and FD, respectively. Precise formulations showed amorphization of IBP and increased surface area, improving solubility. The dissolution pattern of optimized ASD-IBP in pH 6.8 phosphate buffer after 60 min in MF and FD was enhanced 3-fold. In addition, direct compression tablets comprising optimized ASD granules from MF and FD were made and assessed using compendial and noncompendial methods. ASD-IBP/MF and ASD-IBP/FD formulations showed a similar drug release profile. In addition, 12 h of sustained IBP release from the ASD-IBP-containing tablets was obtained in a phosphate buffer with a pH of 6.8. From the dissolution kinetics analysis, the Weibull model fitted well. The drug release pattern indicated minimal variations between tablets formed using ASD-IBP prepared by both procedures; however, pre- and postcompression assessment parameters differed. From these findings, the application of ASD and sustained-release polymers in matrix formation might be beneficial in improving the solubility and absorption of poorly soluble drugs such as IBP.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"2303942"},"PeriodicalIF":2.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helmy Yusuf, Orchidea Meidy Nurintan Savitri, Nadia Natsya Al-Khalifi, Lavinia Gunawan, Brian Karno Chairul, M Agus Syamsur Rijal, Dewi Isadiartuti, Retno Sari
{"title":"Cellulose- and Saccharide-Based Orally Dispersible Thin Films Transform the Solid States and Dissolution Characteristics of Poorly Soluble Curcumin.","authors":"Helmy Yusuf, Orchidea Meidy Nurintan Savitri, Nadia Natsya Al-Khalifi, Lavinia Gunawan, Brian Karno Chairul, M Agus Syamsur Rijal, Dewi Isadiartuti, Retno Sari","doi":"10.1155/2024/8596712","DOIUrl":"10.1155/2024/8596712","url":null,"abstract":"<p><p>This study aimed at developing and optimizing the orally dispersible thin film (ODTF) containing a plant-derived drug-curcumin (CUR). CUR belongs to a biopharmaceutical classification system (BCS) class IV compound that requires improving its water solubility and tissue permeability preceding formulation. An ODTF was applied to produce a solid dispersion matrix for CUR to resolve such solubility and permeability problems. The film-forming polymers used in the study were cellulose-based (hydroxypropyl methylcellulose/HPMC and carboxymethylcellulose/CMC) and saccharide-based maltodextrin (MDX). Poloxamer (POL) was also employed as surfactant and solubilizer. The solvent casting technique was applied to produce the films. The ethanolic solution of CUR was mixed with an aqueous solution of POLs and then incorporated into different film-forming polymers prior to casting. The processing of the CUR with POL solution was intended to aid in the even dispersion of the drug in the polymeric matrices and enhance the wettability of the films. The physical state and properties of the films were characterized in terms of their morphology, crystallinity of the drug, and phase miscibility of the mixtures. The dissolution profile of the films was also evaluated in terms of dissolution rate and dissolution efficiency. The obtained ODTF products were smooth and flat-surfaced. Physical characterization also indicated that the CUR was homogeneously dispersed in the ODTFs and no longer existed as crystalline material as revealed by X-ray diffraction (XRD). The CUR was also not phase-separated from the films as disclosed by differential scanning calorimetry (DSC). Such dispersion was achieved through the solubilizing effect of POLs and compact polymeric film matrices that prevented the CUR from recrystallization. Furthermore, the ODTFs also improved the dissolution of CUR by 3.2-fold higher than the raw CUR. Overall, cellulose-based films had favorable physical properties compared with saccharide-based films.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"8596712"},"PeriodicalIF":2.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the Formulation and Approaches of Injectable Hydrogels Utilizing Hyaluronic Acid in Biomedical Uses.","authors":"Hadeia Mashaqbeh, Batool Al-Ghzawi, Fatima BaniAmer","doi":"10.1155/2024/3869387","DOIUrl":"10.1155/2024/3869387","url":null,"abstract":"<p><p>The characteristics of injectable hydrogels make them a prime contender for various biomedical applications. Hyaluronic acid is an essential component of the matrix surrounding the cells; moreover, hyaluronic acid's structural and biochemical characteristics entice researchers to develop injectable hydrogels for various applications. However, due to its poor mechanical properties, several strategies are used to produce injectable hyaluronic acid hydrogel. This review summarizes published studies on the production of injectable hydrogels based on hyaluronic acid polysaccharide polymers and the biomedical field's applications for these hydrogel systems. Hyaluronic acid-based hydrogels are divided into two categories based on their injectability mechanisms: in situ-forming injectable hydrogels and shear-thinning injectable hydrogels. Many crosslinking methods are used to create injectable hydrogels; chemical crosslinking techniques are the most frequently investigated technique. Hybrid injectable hydrogel systems are widely investigated by blending hyaluronic acid with other polymers or nanoparticulate systems. Injectable hyaluronic acid hydrogels were thoroughly investigated and proven to demonstrate potential in various medical fields, including delivering drugs and cells, tissue repair, and wound dressings.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"3869387"},"PeriodicalIF":2.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian C Ndu, Wonder K M Abotsi, Priscilla K Mante
{"title":"Investigation of Herb-Drug Interactions between <i>Xylopia aethiopica</i>, Its Principal Constituent Xylopic Acid, and Antidepressants.","authors":"Christian C Ndu, Wonder K M Abotsi, Priscilla K Mante","doi":"10.1155/2024/9923801","DOIUrl":"10.1155/2024/9923801","url":null,"abstract":"<p><strong>Introduction: </strong>Depression affects an estimated 350 million people worldwide and is implicated in up to 60% of suicides. Only about 60-70% of patients respond to antidepressant therapy. One of the factors causing patients to not attain therapeutic goals is herb-drug interactions.</p><p><strong>Objective: </strong>To investigate any potential herb-drug interaction that might exist between <i>Xylopia aethiopica</i> extract (XAE) or xylopic acid (XA) and selected conventional antidepressants (imipramine, fluoxetine, and venlafaxine) in mice.</p><p><strong>Methods: </strong>Dried, powdered fruits of <i>Xylopia aethiopica</i> were cold macerated in 70% ethanol to obtain XAE. XA was isolated by cold macerating dried fruits of <i>Xylopia aethiopica</i> in petroleum ether, crystallising impure XA with ethyl acetate, and purifying XA crystals with 96% ethanol. Pharmacodynamic interaction was assessed via isobolographic analysis of tail suspension tests of the agents individually and in their respective combinations. Pharmacokinetic interaction was assessed by monitoring the effect of coadministrations on the plasma concentration of antidepressants and xylopic acid via HPLC analysis.</p><p><strong>Results: </strong>XAE and XA in mice showed significant antidepressant-like activity in the tail suspension test. With interaction indices less than one, synergism of antidepressant effect was observed in the <i>Xylopia aethiopica</i> extract/fluoxetine (<i>γ</i><sub>XAE/FL</sub> = 0.502), <i>Xylopia aethiopica</i> extract/imipramine (<i>γ</i><sub>XAE/IP</sub> = 0.322), <i>Xylopia aethiopica</i> extract/venlafaxine (<i>γ</i><sub>XAE/VL</sub> = 0.601), xylopic acid/imipramine (<i>γ</i><sub>XA/IP</sub> = 0.556), xylopic acid/venlafaxine (<i>γ</i><sub>XA/VL</sub> = 0.451), and xylopic acid/fluoxetine (<i>γ</i><sub>XA/FL</sub> = 0.298) combinations, which may be potentially due to elevation of serotonergic neurotransmission via varying mechanisms. The AUC of imipramine (AUC<sub>IP</sub> = 1966 ± 58.98 <i>µ</i>g/ml.h) was significantly (<i>P</i> < 0.0001) reduced by <i>Xylopia aethiopica</i> extract (AUC<sub>IP</sub> = 1228 ± 67.40 <i>µ</i>g/ml.h) and xylopic acid (AUC<sub>IP</sub> = 1250 ± 55.95 <i>µ</i>g/ml.h), while the AUC of xylopic acid (AUC<sub>XA</sub> = 968.10 ± 61.22 <i>µ</i>g/ml.h) was significantly (<i>P</i> < 0.0001) reduced by venlafaxine (AUC<sub>XA</sub> = 285.90 ± 51.92 <i>µ</i>g/ml.h) and fluoxetine (AUC<sub>XA</sub> = 510.60 ± 44.74 <i>µ</i>g/ml.h), possibly due to the effect of interfering agents on gastric emptying hence reducing oral absorption.</p><p><strong>Conclusion: </strong><i>Xylopia aethiopica</i> extract and xylopic acid interacted synergistically with imipramine, fluoxetine, and venlafaxine and reduced the systemic circulation of imipramine.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"9923801"},"PeriodicalIF":2.8,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alpha-Glucosidase Inhibition, Antioxidant Activities, and Molecular Docking Study of Krom Luang Chumphon Khet Udomsak, a Thai Traditional Remedy.","authors":"Thanchanok Limcharoen, Prapaporn Chaniad, Piriya Chonsut, Chuchard Punsawad, Thana Juckmeta, Atthaphon Konyanee, Ichwan Ridwan Rais, Surat Sangkaew","doi":"10.1155/2024/1322310","DOIUrl":"10.1155/2024/1322310","url":null,"abstract":"<p><p>Krom Luang Chumphon Khet Udomsak remedy (KKR) has traditionally been used as an alternative treatment, particularly for hyperglycemia; however, its therapeutic efficacy has not been scientifically validated. Thus, this study aims to investigate the potential inhibitory and antioxidant effects of <i>α</i>-glucosidase enzyme and characterize the chemical profile of KKR extracts using gas chromatography-mass spectrometry (GC-MS). The investigation highlights both KKR extracts as potent inhibitors of <i>α</i>-glucosidase, with the ethanolic extract of KKR (KKRE) displaying an IC<sub>50</sub> value of 46.80 <i>µ</i>g/mL and a noncompetitive mode of action. The combination of ethanolic and aqueous extracts of KKR (KKRE and KKRA, respectively) with acarbose exhibited a synergistic effect against the <i>α</i>-glucosidase. The KKRE extract displayed strong scavenging effects in the DPPH assay (IC<sub>50</sub> 156.3 <i>µ</i>g/mL) and contained significant total phenolic (172.82 mg GAE/g extract) and flavonoid (77.41 mg QE/g extract) contents. The major component of KKRE is palmitic acid (15.67%). Molecular docking revealed that the major compounds interacted with key amino acid residues (ASP215, GLU277, HIS351, ASP352, and ARG442), which are crucial for inhibiting <i>α</i>-glucosidase. Notably, campesterin had a more significant influence on <i>α</i>-glucosidase than acarbose, with low binding energy. These findings underscore the significance of KKR in traditional medicine and suggest that it is promising treatment for diabetes mellitus. Further studies using animal model will provide valuable insights for advancing this research.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"1322310"},"PeriodicalIF":2.1,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>In Vitro</i> Antibacterial, DPPH Radical Scavenging Activities, and <i>In Silico</i> Molecular Modeling of Isolated Compounds from the Roots of <i>Clematis hirsuta</i>.","authors":"Tolessa Duguma, Yadessa Melaku, Ankita Garg, Urgessa Ensermu","doi":"10.1155/2024/3152929","DOIUrl":"10.1155/2024/3152929","url":null,"abstract":"<p><p><i>Clematis hirsuta</i> is one of the traditional medicinal plants used in Ethiopia to treat different ailments, such as cancer and diseases related to the respiratory system. This study aimed to isolate the phytochemical components of the root of <i>C. hirsuta</i> and evaluate their <i>in vitro</i> and <i>in silico</i> biological activities. Oleic acid (1), palmitic acid (2), sterols (3 and 4), boehmenan (5), and carolignans E (6 and 7) were isolated by silica gel column chromatography and preparative thin layer chromatography and characterized by NMR spectroscopy. Compounds 5-7 were isolated from the plant for the first time. At 5 mg/mL, the inhibition zone of evaluated compounds ranged from 8.80 to 11.10 mm against all selected bacteria. The MIC of the MeOH and <i>n</i>-hexane: EtOAc (1 : 1) extracts was greater than or equal to 50 mg/mL against all selected bacteria. At 62.5 <i>μ</i>g/mL, the % DPPH radical scavenging activity of tested compounds ranged from 30.3% to 92.1% with an IC<sub>50</sub> value of 19.4 to 2.1 <i>μ</i>g/mL. The results of molecular docking studies indicated that the docking scores of compounds 3-7 ranged from -6.4 to -7.9 kcal/mol against <i>E. coli</i> DNA gyrase B, -8.3 to -9.0 kcal/mol against the <i>Pseudomonas</i> quinolone signal A, -7.1 to -8.5 kcal/mol against pyruvate kinase M2, and -7.9 to -8.5 kcal/mol against human topoisomerase <i>IIβ</i>. The results of the <i>in silico</i> antibacterial activity of compounds <b>3</b>, <b>5</b>, and <b>6</b> supported the <i>in vitro</i> antibacterial test results. Compound <b>5</b> had a better docking score against human topoisomerase <i>IIβ</i> than the other test samples demonstrating its potential as an anticancer agent. Therefore, compounds 3-7 could be considered as a lead for developing antibacterial and anticancer drugs. Moreover, the presence of these active phytochemicals supports the traditional use of this plant against cancer and bacteria.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"3152929"},"PeriodicalIF":2.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the Presence of Falsified and Poor-Quality Fixed-Dose Combination Artemether-Lumefantrine Pharmaceutical Dosage Forms in Kumasi, Ghana.","authors":"Simon Nyarko, Kwabena Ofori-Kwakye, Raphael Johnson, Noble Kuntworbe, Denis Dekugmen Yar","doi":"10.1155/2024/2650540","DOIUrl":"10.1155/2024/2650540","url":null,"abstract":"<p><p>Artemether-lumefantrine (AL) is a highly effective and commonly used Artemisinin-based Combination Therapy (ACT) for treating uncomplicated malaria caused by <i>Plasmodium falciparum</i>, including drug-resistant strains. However, ineffective regulatory systems in resource-limited settings can lead to the infiltration of poor-quality and counterfeit antimalarial medicines into the pharmaceutical supply chain, causing treatment failures, prolonged illness, and disease progression. The objective of the study was to assess the quality of selected brands of fixed-dose combination (FDC) AL tablets and suspensions marketed in Kumasi, Ghana. A total of fourteen brands of FDC AL medicines, comprising eight tablets and six suspensions were purchased from various retail pharmacy outlets in Kumasi, Ghana. All samples were subjected to thorough visual inspection as a quick means of checking quality through meticulous observation of the packaging or dosage form. The quality parameters of the tablets were determined using uniformity of weight, hardness, friability, and disintegration tests. Suspensions were assessed based on pH and compared with the British Pharmacopeia (BP) standard. The samples were then analyzed for drug content (assay) using reverse-phase high-performance liquid chromatography (RP-HPLC). All the tablet samples conformed to BP specification limits for uniformity of weight (deviation of less than ± 5%), hardness (4.0-10 kg/mm<sup>2</sup>), friability (<1%), and disintegration time (<15 minutes). The active pharmaceutical ingredients' quantitative assay demonstrated that all the tablets met the BP specifications (90-110%). The results of the pH studies showed that out of the six brands of suspension investigated, five (83.3%) were compliant with the official specification for pH, while one (16.7%) failed the requirement. Unlike the tablet brands, drug content analysis of the six suspensions showed that two (33.3%) were substandard. The artemether and lumefantrine contents in these failed suspensions were variable (artemether: 81.31%-116.76%; lumefantrine: 80.35%-99.71%). The study results indicate that most of the tested products met the required quality standards, demonstrating satisfactory drug content and other quality specifications. The presence of substandard drugs underscores the necessity for robust pharmacovigilance and surveillance systems to eliminate counterfeit and substandard drugs from the Ghanaian market.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"2650540"},"PeriodicalIF":2.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Suppression of Inflammation in Adipocyte-Macrophage Coculture by Passion Fruit Seed Extract: Insights into the p38 and NF-ҡB Pathway.","authors":"Sukanya Chusongdam, Wanwipha Woonnoi, Furoida Moolsup, Chakkapat Aenglong, Pennapa Chonpathompikunlert, Supita Tanasawet, Jirawat Saetan, Wanida Sukketsiri","doi":"10.1155/2024/7990333","DOIUrl":"10.1155/2024/7990333","url":null,"abstract":"<p><p>Obesity, which is characterized by chronic low-grade inflammation, involves the infiltration of immune cells into adipose tissue, leading to the secretion of inflammatory cytokines and subsequent inflammation. Therefore, the aim of this study was to examine the potential of passion fruit seed extract (PSEE) in mitigating lipopolysaccharide (LPS)-induced inflammation in a coculture system comprising macrophages and adipocytes. PSEE demonstrated significant reductions in reactive oxygen species (ROS) and nitric oxide (NO) levels, primarily achieved through the downregulation of inducible nitric oxide synthase (iNOS) protein expression in LPS-induced adipocyte-macrophage cocultures. Furthermore, PSEE effectively suppressed the secretion of TNF-<i>α</i> and IL-1<i>β</i> by attenuating the gene expression of these cytokines, as well as other inflammation-related genes such as MMP-2, IL-6, and MCP-1. Notably, PSEE exhibited potent inhibitory effects on the p38 and NF-<i>κ</i>B signaling pathways, thus alleviating inflammation in the LPS-induced adipocyte-macrophage cocultures. Additionally, PSEE led to a decrease in the expression of ACC, HSL, and FaSN, while aP2 and ATGL showed increased expression in LPS-induced cocultured macrophages and adipocytes. These findings suggest that passion fruit seed extract effectively combats inflammation by suppressing the p38 and NF-<i>κ</i>B signaling pathways, resulting in reduced levels of proinflammatory cytokines, NO, and ROS production.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"7990333"},"PeriodicalIF":2.8,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zainab Al-Ansi, Mohammed Masaoud, Khaled Hussein, Bushra Moharram, Wafa M Al-Madhagi
{"title":"Antibacterial and Antioxidant Activities of Triterpenoids Isolated from Endemic <i>Euphorbia arbuscula</i> Stem Latex.","authors":"Zainab Al-Ansi, Mohammed Masaoud, Khaled Hussein, Bushra Moharram, Wafa M Al-Madhagi","doi":"10.1155/2024/8273789","DOIUrl":"10.1155/2024/8273789","url":null,"abstract":"<p><p>This research study aimed to investigate the chemical constituents and evaluate the antibacterial and antioxidant activities of stem latex extracts from the endemic medicinal plant <i>Euphorbia arbuscula</i> found on Socotra Island, Yemen. The study aimed to assess the potential medicinal and veterinary uses of this plant, representing the first evaluation of its properties. The stem latex was extracted using ethanol, and the resulting oil underwent analysis using GC-MS to identify eight compounds. In addition, chromatographic techniques were employed to isolate two triterpenoids, lanosterol and lupeol, from the stem latex. The structures of these compounds were confirmed using IR, MS, and NMR techniques. The antibacterial activity of the extracts and isolated compounds was evaluated against three bacterial strains using the disc diffusion method, revealing only weak antibacterial effects. The study also investigated the antioxidant activity using the DPPH assay, where the ethyl acetate extract exhibited the highest activity with an IC<sub>50</sub> value of ±13.55 <i>µ</i>g/mL, followed by the chloroform extract with an IC<sub>50</sub> of ±21.87 <i>µ</i>g/mL. These findings emphasize the potential of <i>Euphorbia arbuscula</i> in the development of new medicines, particularly due to its notable antioxidant activity. The research methodology employed a scientifically rigorous approach, utilizing a comprehensive range of analytical techniques. However, further investigation is required to fully assess the plant's potential as a therapeutic agent.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"8273789"},"PeriodicalIF":2.8,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cardiovascular Protective Effect of <i>Garcinia dulcis</i> Flower Acetone Extract in 2-Kidney-1-Clip Hypertensive Rats.","authors":"Nattaya Thongsepee, Pongsakorn Martviset, Wanwisa Himakhun, Pathanin Chantree, Phornphan Sornchuer, Kant Sangpairoj, Siriphun Hiranyachattada","doi":"10.1155/2024/9916598","DOIUrl":"10.1155/2024/9916598","url":null,"abstract":"<p><p>Morelloflavone and camboginol are bioactive compounds purified from <i>Garcinia dulcis</i> (GD), which has anti-inflammatory and antihypertensive properties. The objective of this study was to examine the cardiovascular protective effect of GD flower acetone extract in 2-kidney-1-clip (2K1C) hypertensive rats. Male Wistar rats underwent 2K1C or sham operation (SO) and were housed for 4 weeks. Each group of rats, then, was further divided into 2 subgroups receiving oral administration of either 50 mg/kg BW GD extract or corn oil (vehicle) daily for 4 weeks. Noninvasive blood pressure (BP) and body weight were measured weekly throughout the study. Subsequently, the invasive measurement of arterial BP and the heart rate were determined in all anesthetized rats. The baroreceptor reflex sensitivity (BRS) was investigated by injection of either phenylephrine or sodium nitroprusside for bradycardia or tachycardia response, respectively. Histological examination of the heart and thoracic aorta was also performed in order to investigate the general morphology and the tumor necrosis factor alpha (TNF-<i>α</i>) expression. We found that the GD flower extract significantly diminished the BP and restored the impaired BRS. Moreover, it also decreased the TNF-<i>α</i> expression in the cardiac muscle and thoracic aorta of 2K1C when compared to the SO group. Taken together, our data showed that GD flower extract exhibits the cardiovascular protective effect in the 2K1C hypertensive rats.</p>","PeriodicalId":7369,"journal":{"name":"Advances in Pharmacological and Pharmaceutical Sciences","volume":"2024 ","pages":"9916598"},"PeriodicalIF":2.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}