Advances in Natural Sciences: Nanoscience and Nanotechnology最新文献

筛选
英文 中文
Facile one-step synthesis of in situ WO3@Gr nanorods as an efficient material for antimicrobial and decoloration applications 一步法简便合成原位 WO3@Gr 纳米棒,作为抗菌和脱色应用的高效材料
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-05-27 DOI: 10.1088/2043-6262/ad4851
Khoa Dang Nguyen, Nguyen Quang Thinh Le, Linh Tieu Loan Tieu, Thuy Huong Nguyen, Thi Lan Anh Luu, Huu Hung Nguyen, Cong Tu Nguyen and Ngoc Phuong Thao Nguyen
{"title":"Facile one-step synthesis of in situ WO3@Gr nanorods as an efficient material for antimicrobial and decoloration applications","authors":"Khoa Dang Nguyen, Nguyen Quang Thinh Le, Linh Tieu Loan Tieu, Thuy Huong Nguyen, Thi Lan Anh Luu, Huu Hung Nguyen, Cong Tu Nguyen and Ngoc Phuong Thao Nguyen","doi":"10.1088/2043-6262/ad4851","DOIUrl":"https://doi.org/10.1088/2043-6262/ad4851","url":null,"abstract":"This work examined the synthesis, antibacterial activity, and decolourisation of WO3@Graphene nanorods (WO3@Gr NR). WO3@Gr NR nanocomposite was in situ produced via a facile one-step hydrothermal process employing sodium tungstate dihydrate and exfoliated graphene as precursors. The resulted NR exhibited an average diameter of 13 nm, a large specific surface area of 53.3 m2 g−1, and a bimodal pore size distribution with an average pore size of 5.5 nm. The optical bandgap is extrapolated to be 2.75 eV. Graphene was shown to be responsible for the sample’s elaborate visible-light absorption, which improved adsorption and the ability to harvest visible light. WO3@Gr NR are more efficient against E. coli than S. aureus, killing up to 52% and 39% of cells, respectively, after two hours of treatment. When used in conjunction with invisible light, the NR killed E. coli and S. aureus by 78 and 62%, respectively. The bactericidal activity of photoinduced WO3@Gr NR was evaluated against P. aerugunosa, E. faecalis, E. coli, and S. aureus. The photocatalytic constant rates of organic dye methylene blue (MB) were determined to be 0.01 min−1. An IC50 (50% cell growth inhibition) value of 97 (μg ml−1) was determined for the nanocomposite against human liver cancer cell lines (HepG2). Our findings suggest that this nanorod may be utilised to degrade bacteria and organic colours in wastewater simultaneously while posing no risk to human health.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directly electrospun copper ferrite CuFe2O4 nanofiber-based for gas classification 用于气体分级的直接电纺铜铁氧体 CuFe2O4 纳米纤维
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-05-27 DOI: 10.1088/2043-6262/ad4850
Hong Phuoc Phan, Van Hoang Nguyen, Ngoc-Viet Nguyen and Van Hieu Nguyen
{"title":"Directly electrospun copper ferrite CuFe2O4 nanofiber-based for gas classification","authors":"Hong Phuoc Phan, Van Hoang Nguyen, Ngoc-Viet Nguyen and Van Hieu Nguyen","doi":"10.1088/2043-6262/ad4850","DOIUrl":"https://doi.org/10.1088/2043-6262/ad4850","url":null,"abstract":"The cross-response is a considerable primary challenge of gas sensors based on semiconducting metal oxide (SMO), especially in detecting and classifying gases with comparable properties. In this work, the copper ferrite (CuFe2O4, CFO) nanofibers (NFs)-based sensors were straightforwardly synthesised by electrospinning technique. The morphology of the CFO NFs was observed using scanning electron microscopy (SEM), which revealed a rough surface with a diameter of approximately 80 nm. The composition of the fiber was confirmed by energy dispersive spectroscopy (EDS), which showed the fiber’s chemical elements to include Cu, Fe, and O. The microstructural characteristics of the CFO NFs were analysed using x-ray diffraction (XRD) and Raman spectroscopy, confirming the characteristic peaks of the CFO phase. The gas sensing characteristics of CFO-based sensors have been examined to 25−200 ppm of various gases of (CH3)2CO, CH3CH2OH, NH3, and H2 at a function of working temperature of 350−450 °C. The gas-sensing mechanism of the sensor based on CFO NFs is explained by the surface depletion layer and the grain boundary model. The successful categorisation of these gases into distinct groups was realised, indicating that the issue of cross-response caused by interfering gases was effectively addressed with the aid of an artificial intelligence algorithm.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced anti-breast cancer activity of green synthesized selenium nanoparticles by PEGylation: induction of apoptosis and potential anticancer drug delivery system 通过 PEG 化增强绿色合成硒纳米粒子的抗乳腺癌活性:诱导细胞凋亡和潜在的抗癌药物输送系统
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-05-27 DOI: 10.1088/2043-6262/ad4bae
Samer Y Al-Qaraleh, Wael A Al-Zereini, Sawsan A Oran, Osama Y Al-Madanat, Aiman I Al-Qtaitat and Abdalrahim Alahmad
{"title":"Enhanced anti-breast cancer activity of green synthesized selenium nanoparticles by PEGylation: induction of apoptosis and potential anticancer drug delivery system","authors":"Samer Y Al-Qaraleh, Wael A Al-Zereini, Sawsan A Oran, Osama Y Al-Madanat, Aiman I Al-Qtaitat and Abdalrahim Alahmad","doi":"10.1088/2043-6262/ad4bae","DOIUrl":"https://doi.org/10.1088/2043-6262/ad4bae","url":null,"abstract":"Breast cancer is a disease associated with high morbidity and mortality rates worldwide. The potential use of biogenic nanoparticles as alternative anticancer agents has been immensely acknowledged in several studies, particularly selenium nanoparticles (SeNPs). Nanoparticles were synthesised using the aqueous extract of Moringa peregrine (MPM-SeNPs) and were PEGylated (PEG-MPM-SeNPs). MPM-SeNPs were characterised by chemical and physical techniques. The successful capping of MPM-SeNPs with PEG was confirmed by spectrophotometric measurements and via Fourier-transform infrared spectroscopy (FT-IR) analysis. Furthermore, the effect of PEGylation of MPM-SeNPs on enhancing their anti-breast cancer activity and as a drug delivery agent was evaluated. Therefore, the loading efficiency and release of DOX at different pH values were measured; the antiproliferative activity of PEG-MPM-SeNPs against the adenocarcinoma breast cancer cell line (MDA-MB-231) was evaluated and compared with that of biogenic MPM-SeNPs and DOX-conjugated PEG-MPM-SeNPs. PEG-MPM-SeNPs and DOX-PEG-MPM-SeNPs had reduced IC50 values compared to MPM-SeNPs; IC50 of 11.54 ± 1.74 and 31.27 ± 2.9 μg mL−1 compared to 71.4 ± 3.4 μg mL−1, respectively. MPM-SeNPs and PEG-MPM-SeNPs caused apoptosis to MDA-MB-231 cells with a significant decrease in the mitochondrial membrane potential (MMP), increase in the released cytochrome C (Cyt C), and activation of caspase-3/9 (P < 0.05). Linking DOX to PEG-MPM-SeNPs led to an increase in caspase-3/8 concentrations and an increase in the released Cyt C, but there were non-significant differences in MMP (P > 0.1) between treated and untreated control cancer cells. MPM-SeNPs and PEG-MPM-SeNPs caused apoptotic reactions via an intrinsic pathway, while linking DOX to PEG-MPM-SeNPs caused apoptosis in cancer cells through an extrinsic pathway.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A current review on boron nitride nanotubes and their applications 氮化硼纳米管及其应用综述
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-02-06 DOI: 10.1088/2043-6262/ad22d6
Adithya Lenin Tamilkovan, Pandurangan Arumugam
{"title":"A current review on boron nitride nanotubes and their applications","authors":"Adithya Lenin Tamilkovan, Pandurangan Arumugam","doi":"10.1088/2043-6262/ad22d6","DOIUrl":"https://doi.org/10.1088/2043-6262/ad22d6","url":null,"abstract":"BNNTs are the tubular variants of the ceramic compound hexagonal boron nitride (hBN) and are known for their high thermal and chemical stability. The research on BNNTs is ever-evolving, researchers are on a quest to optimise the synthesis procedure for the nanomaterial. Here a variety of currently followed synthesis techniques were discussed and compared. X-ray diffraction patterns and electron microscopy results of BNNTs synthesised by various techniques were compared, this would give the pros and cons of each synthesis technique. Based on this, suggestions for the best-suited synthesis technique from an academic as well as industrial perspective were given. The individual properties of these nanotubes, along with their potential applications in the field of spintronics, surface wetting, and radiation capture were delineated.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the types of nanomaterials and methodologies used for the development of biosensors 纳米材料类型及生物传感器开发方法综述
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-02-02 DOI: 10.1088/2043-6262/ad21e8
Sourav Ghosh, K Martin Sagayam, Dibyajyoti Haldar, A Amir Anton Jone, Biswaranjan Acharya, Vassilis C Gerogiannis, Andreas Kanavos
{"title":"A review on the types of nanomaterials and methodologies used for the development of biosensors","authors":"Sourav Ghosh, K Martin Sagayam, Dibyajyoti Haldar, A Amir Anton Jone, Biswaranjan Acharya, Vassilis C Gerogiannis, Andreas Kanavos","doi":"10.1088/2043-6262/ad21e8","DOIUrl":"https://doi.org/10.1088/2043-6262/ad21e8","url":null,"abstract":"Biosensors have gained significant attention in various fields such as food processing, agriculture, environmental monitoring, and healthcare. With the continuous advancements in research and technology, a wide variety of biosensors are being developed to cater to diverse applications. However, the effective development of nanobiosensors, particularly the synthesis of nanomaterials, remains a crucial step. Many nanobiosensors face challenges related to instability and selectivity, making it difficult to achieve proper packaging. While some biosensors have been successfully implemented in commercial settings, there is a pressing need to address their limitations and advance their capabilities. The next generation of biosensors, based on nanomaterials, holds promise in overcoming these challenges and enhancing the overall performance of biosensor devices. The commercial viability of these biosensors will rely on their accuracy, reliability, and cost-effectiveness. This review paper provides an overview of various types of nanomaterials and their applications in the development of nanobiosensors. The paper highlights a comparison of different nanomaterial-based biosensors, discussing their advantages, limitations, and performance characteristics.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogenic synthesis of silver, gold, and palladium nanoparticles using moringa oleifera seeds: exploring photocatalytic, catalytic, and antimicrobial activities 利用油茶籽生物合成银、金和钯纳米粒子:探索光催化、催化和抗菌活性
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-01-19 DOI: 10.1088/2043-6262/ad1a9b
M S Anandha Prabhu, G Edwin Sheela, Abeer M Mohammad, Rabab A Hegazy, S Sasi Florence, V Sarojini
{"title":"Biogenic synthesis of silver, gold, and palladium nanoparticles using moringa oleifera seeds: exploring photocatalytic, catalytic, and antimicrobial activities","authors":"M S Anandha Prabhu, G Edwin Sheela, Abeer M Mohammad, Rabab A Hegazy, S Sasi Florence, V Sarojini","doi":"10.1088/2043-6262/ad1a9b","DOIUrl":"https://doi.org/10.1088/2043-6262/ad1a9b","url":null,"abstract":"In this study, we explored the green synthesis of metal nanoparticles (Ag-NPs, Au-NPs, and Pd-NPs) using <italic toggle=\"yes\">Moringa oleifera</italic> seed (MOS) extract, which is known for its nutrient density, antioxidant properties, anti-inflammatory effects, and potential benefits in managing cholesterol, blood sugar levels, as well as promoting digestion, skin, and hair health. The nanoparticles’ size was controlled by varying the concentration of MOS extract. The successful formation of Au-NPs and Ag-NPs was confirmed through surface plasmon resonance (SPR), while the absence of absorption at 420 nm indicated the reduction of Pd<sup>2+</sup> ions to Pd<sup>0</sup>, affirming the synthesis of Pd-NPs. The nanoparticles exhibited mono-dispersed, spherical shapes with confirmed crystallinity. Sizes were determined as 28 nm for Pd-NPs, 5 nm for Au-NPs, and 19 nm for Ag-NPs. The MOS extract’s phenols and proteins played a crucial role in reducing and stabilising Ag-NPs, Au-NPs, and Pd-NPs. Notably, the synthesised nanoparticles demonstrated strong antimicrobial activity, particularly against <italic toggle=\"yes\">Salmonella typhi</italic>, making them potential antibacterial agents. The catalytic efficiency of Au-NPs, Ag-NPs and Pd-NPs was studied using the reduction of 4-Nitrophenol (4-NP) by NaBH<sub>4 </sub>to 4-Aminophenol. Additionally, Au-NPs showed enhanced photocatalytic degradation rate constant and catalytic reaction rate constant of 0.0038/min and 0.261/min respectively, due to their small size and increased surface area. By combining a green synthesis approach with an in-depth analysis of properties and diverse applications, this study provides valuable insights into the immense potential of MOS-assisted metal nanoparticles for various technological and environmental advancements.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and application of ZSM-5/Graphene composite for photocatalytic degradation of industrial dyes 用于光催化降解工业染料的 ZSM-5/Graphene 复合材料的合成与应用
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-01-19 DOI: 10.1088/2043-6262/ad1a9e
Veena Sodha, Mahuya Bandyopadhyay, Rama Gaur, Rajib Bandyopadhyay, Syed Shahabuddin
{"title":"Synthesis and application of ZSM-5/Graphene composite for photocatalytic degradation of industrial dyes","authors":"Veena Sodha, Mahuya Bandyopadhyay, Rama Gaur, Rajib Bandyopadhyay, Syed Shahabuddin","doi":"10.1088/2043-6262/ad1a9e","DOIUrl":"https://doi.org/10.1088/2043-6262/ad1a9e","url":null,"abstract":"Various materials and technologies are being employed to address the concern of increased wastewater generation. In this work, the synthesis of ZSM-5 (Zeolite Socony Mobil-5) and graphene (GR) composite, their characterisation, and application for the removal of dyes are presented. Two composites of ZSM-5 and GR composites were prepared via the hydrothermal method by varying the loading amount of GR, i.e. 1% and 5%, and labelled as GZ1 and GZ5. The parent and composite materials were characterised using field emission scanning electron microscope (FE-SEM), x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), x-ray photoelectrons spectroscopy (XPS), Raman, and Fourier transform infrared (FTIR). The materials were then employed for the photodegradation of methyl orange (MO) dye. The adsorption efficiencies for ZSM-5, GR, GZ1, and GZ5 were found as 0%, 17.8%, 0%, and 16% respectively. According to photodegradation results, the GZ1 composite exhibits the maximum degradation efficiency of 75.3% for 20 ppm of MO, within 180 min of light exposure. The scavenger studies were performed to evaluate the role of active oxygen species (AOS) in the photocatalysis mechanism. All studies were performed with the catalyst dosage of 0.5 mg ml<sup>−1</sup>. The degradation efficiencies for GR, GZ5, and Z5 were reported as 34.2%, 20.8%, and 17.5%, respectively. On increasing the irradiation time to 240 min, the degradation efficiency of GZ1 reached 92%. The removal efficiencies for MO (7 ppm) and methyl blue (5 ppm) in a 12-ppm dye mixture were observed to be 98% and 97.2% respectively within 180 min of light exposure with GZ1 composite.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hetero-epitaxial grown Pt@Au core-shell bimetallic nanoparticles on reduced graphene oxide (RGO) as electrocatalyst for oxygen reduction reaction in alkaline media 还原型氧化石墨烯 (RGO) 上异质外延生长的 Pt@Au 核壳双金属纳米粒子作为碱性介质中氧还原反应的电催化剂
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-01-17 DOI: 10.1088/2043-6262/ad1a9d
P Raghavendra, Y Chandra Sekhar, G Vishwakshan Reddy, P Sri Chandana, L Subramanyam Sarma
{"title":"Hetero-epitaxial grown Pt@Au core-shell bimetallic nanoparticles on reduced graphene oxide (RGO) as electrocatalyst for oxygen reduction reaction in alkaline media","authors":"P Raghavendra, Y Chandra Sekhar, G Vishwakshan Reddy, P Sri Chandana, L Subramanyam Sarma","doi":"10.1088/2043-6262/ad1a9d","DOIUrl":"https://doi.org/10.1088/2043-6262/ad1a9d","url":null,"abstract":"The core-shell structured Pt@Aubimetallic nanoparticles (NPs) were decorated on the reduced graphene oxide (RGO) surface by a heteroepitaxial growth method. The morphological details of Pt@Au/RGO core/shell bimetallic NPs were assessed by high-resolution transmission electron microscopy (HR-TEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS). Electron microscopy results revealed that Pt@Au particles of 3.4 nm were firmly attached to RGO sheets. The electrochemical response of Pt@Au/RGO nanostructured electrocatalyst was measured through cyclic voltammetry (CV) at room temperature in 0.1 M KOH solution. Oxygen reduction reaction (ORR) efficacies of Pt@Au/RGO were evaluated by linear sweep voltammetry (LSV) by rotating catalyst-coated glassy carbon (GC) electrode at different rotation speeds in oxygen saturated 0.1 M KOH solution. The electrochemical activity descriptors (half-wave potential, onset potential, limiting current density) were assessed from ORR polarisation curves. The results revealed that Pt@Au/RGO bimetallic NPs showed enhanced higher catalytic activity towards ORR compared to commercial Pt/C catalyst as well as similarly synthesised Pt/RGO and Au/RGO. The enhanced catalytic activity of Pt@Au/RGO electrocatalyst might result from the core/shell structure with a tiny Pt core and a thin Au shell, as well as the synergistic effects of Au and Pt.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on immobilisation process on lateral flow assay test strip for detection of Enrofloxacin antibiotic by inkjet printing 通过喷墨打印固定化工艺研究用于检测恩诺沙星抗生素的横向流动检测试纸
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-01-17 DOI: 10.1088/2043-6262/ad1aa0
Duc Minh Trinh Dinh, Anh Van Thi Le, Phuong Hong Lam, Mai Thi Le, Dung My Thi Dang, Chien Mau Dang, Ngan Nguyen Le
{"title":"Study on immobilisation process on lateral flow assay test strip for detection of Enrofloxacin antibiotic by inkjet printing","authors":"Duc Minh Trinh Dinh, Anh Van Thi Le, Phuong Hong Lam, Mai Thi Le, Dung My Thi Dang, Chien Mau Dang, Ngan Nguyen Le","doi":"10.1088/2043-6262/ad1aa0","DOIUrl":"https://doi.org/10.1088/2043-6262/ad1aa0","url":null,"abstract":"Enrofloxacin has been widely and increasingly used in veterinary medicine to treat infection on animals which could lead to antibiotic resistance for the consumer. Among the available detection techniques for Enrofloxacin, immunoassay lateral flow test strip is realised to be a rapid and accurate detection method for on-site analysis of Enrofloxacin antibiotic. The current study aims to analyse the application of inkjet printing technology on the immobilisation of biological substances at the test line and control line position of the test strip. With the printing parameters value at 35 °C, 35 °C, 7 layers and 15 <italic toggle=\"yes\">μ</italic>m for cartridge temperature, substrate temperature, printing layers and drop spacing, respectively, the fabricated test strips show correlation coefficient <italic toggle=\"yes\">R</italic>\u0000<sup>2</sup> at 0.993 for the test with Enrofloxacin samples in the concentration range from 0 to 100 ppb. Compared to conventional fabrication method, the immobilisation process utilising inkjet printing technology is considered to be superior in printing patterns with a simple and material-saving process, which holds a potential of innovative and financially beneficial approach for on-site detection of Enrofloxacin antibiotic.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly uniform core/shell structures AuR/Ag and AuR/Ag@BSA with various shell thicknesses for surface-enhanced Raman scattering 用于表面增强拉曼散射的具有不同壳厚度的高度均匀核/壳结构 AuR/Ag 和 AuR/Ag@BSA
IF 2.1
Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2024-01-16 DOI: 10.1088/2043-6262/ad1a9a
Khac Khoi Tran, Tien Ha Le, Viet Ha Chu, Thi Hue Do
{"title":"Highly uniform core/shell structures AuR/Ag and AuR/Ag@BSA with various shell thicknesses for surface-enhanced Raman scattering","authors":"Khac Khoi Tran, Tien Ha Le, Viet Ha Chu, Thi Hue Do","doi":"10.1088/2043-6262/ad1a9a","DOIUrl":"https://doi.org/10.1088/2043-6262/ad1a9a","url":null,"abstract":"This work indicates the synthesis of uniform core/shell nanostructures (AuR/Ag) with different thicknesses of Ag shell by the double seed method. This method consists of two self-sufficient progresses, one seed for the formation of gold nanorods (AuRs) and one for the formation of the Ag shell for the gold nanorods to form the AuR/Ag. Acid ascorbic (L-AA) acts as a weak reducing agent and hexadecyltrimethylammonium chloride (CTAC) acts as a surfactant for Ag shell. The formation and growth of the Ag shell were carefully investigated by changing the reaction factors such as temperature, time, and concentration of AgNO<sub>3</sub>. The greater the concentration of AgNO<sub>3</sub> shelling precursor, the thicker the shell and therefore the more high-energy vibrational modes appear in the near-ultraviolet region. In survey of surface-enhanced Raman scattering effect of AuRs and AuR/Ag with Rhodamine B (RB) detector, the results show that AuR/Ag has the ability to enhance Raman signal much better than AuRs. At the same time, the thicker the Ag shell, the better the Raman signal enhancement ability.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信