{"title":"氮化硼纳米管及其应用综述","authors":"Adithya Lenin Tamilkovan, Pandurangan Arumugam","doi":"10.1088/2043-6262/ad22d6","DOIUrl":null,"url":null,"abstract":"BNNTs are the tubular variants of the ceramic compound hexagonal boron nitride (hBN) and are known for their high thermal and chemical stability. The research on BNNTs is ever-evolving, researchers are on a quest to optimise the synthesis procedure for the nanomaterial. Here a variety of currently followed synthesis techniques were discussed and compared. X-ray diffraction patterns and electron microscopy results of BNNTs synthesised by various techniques were compared, this would give the pros and cons of each synthesis technique. Based on this, suggestions for the best-suited synthesis technique from an academic as well as industrial perspective were given. The individual properties of these nanotubes, along with their potential applications in the field of spintronics, surface wetting, and radiation capture were delineated.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A current review on boron nitride nanotubes and their applications\",\"authors\":\"Adithya Lenin Tamilkovan, Pandurangan Arumugam\",\"doi\":\"10.1088/2043-6262/ad22d6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BNNTs are the tubular variants of the ceramic compound hexagonal boron nitride (hBN) and are known for their high thermal and chemical stability. The research on BNNTs is ever-evolving, researchers are on a quest to optimise the synthesis procedure for the nanomaterial. Here a variety of currently followed synthesis techniques were discussed and compared. X-ray diffraction patterns and electron microscopy results of BNNTs synthesised by various techniques were compared, this would give the pros and cons of each synthesis technique. Based on this, suggestions for the best-suited synthesis technique from an academic as well as industrial perspective were given. The individual properties of these nanotubes, along with their potential applications in the field of spintronics, surface wetting, and radiation capture were delineated.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ad22d6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ad22d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
BNNTs 是陶瓷化合物六方氮化硼(hBN)的管状变体,以其高度的热稳定性和化学稳定性而著称。有关 BNNTs 的研究一直在不断发展,研究人员一直在努力优化这种纳米材料的合成过程。在此,我们对目前采用的各种合成技术进行了讨论和比较。通过比较各种技术合成的 BNNT 的 X 射线衍射图样和电子显微镜结果,可以看出每种合成技术的优缺点。在此基础上,从学术和工业角度对最适合的合成技术提出了建议。此外,还介绍了这些纳米管的特性,以及它们在自旋电子学、表面润湿和辐射捕获领域的潜在应用。
A current review on boron nitride nanotubes and their applications
BNNTs are the tubular variants of the ceramic compound hexagonal boron nitride (hBN) and are known for their high thermal and chemical stability. The research on BNNTs is ever-evolving, researchers are on a quest to optimise the synthesis procedure for the nanomaterial. Here a variety of currently followed synthesis techniques were discussed and compared. X-ray diffraction patterns and electron microscopy results of BNNTs synthesised by various techniques were compared, this would give the pros and cons of each synthesis technique. Based on this, suggestions for the best-suited synthesis technique from an academic as well as industrial perspective were given. The individual properties of these nanotubes, along with their potential applications in the field of spintronics, surface wetting, and radiation capture were delineated.