Journal for the measurement of physical behaviour最新文献

筛选
英文 中文
Characterizing ActiGraph's Idle Sleep Mode in Free-living Assessments of Physical Behavior. 在自由生活的身体行为评估中描述 ActiGraph 的闲置睡眠模式。
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 Epub Date: 2024-04-02 DOI: 10.1123/jmpb.2023-0038
Samuel R LaMunion, Robert J Brychta, Joshua R Freeman, Pedro F Saint-Maurice, Charles E Matthews, Asuka Ishihara, Kong Y Chen
{"title":"Characterizing ActiGraph's Idle Sleep Mode in Free-living Assessments of Physical Behavior.","authors":"Samuel R LaMunion, Robert J Brychta, Joshua R Freeman, Pedro F Saint-Maurice, Charles E Matthews, Asuka Ishihara, Kong Y Chen","doi":"10.1123/jmpb.2023-0038","DOIUrl":"10.1123/jmpb.2023-0038","url":null,"abstract":"","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Sleep and Physical Activity Metrics From Wrist-Worn ActiGraph wGT3X-BT and GT9X Accelerometers During Free-Living in Adults 比较腕戴式 ActiGraph wGT3X-BT 和 GT9X 加速计在成人自由生活期间测量的睡眠和体力活动指标
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 DOI: 10.1123/jmpb.2023-0026
Duncan S. Buchan
{"title":"Comparison of Sleep and Physical Activity Metrics From Wrist-Worn ActiGraph wGT3X-BT and GT9X Accelerometers During Free-Living in Adults","authors":"Duncan S. Buchan","doi":"10.1123/jmpb.2023-0026","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0026","url":null,"abstract":"Background: ActiGraph accelerometers can monitor sleep and physical activity (PA) during free-living, but there is a need to confirm agreement in outcomes between different models. Methods: Sleep and PA metrics from two ActiGraphs were compared after participants (N = 30) wore a GT9X and wGT3X-BT on their nondominant wrist for 7 days during free-living. PA metrics including total steps, counts, average acceleration—Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation, intensity gradient, the minimum acceleration value of the most active 10 and 30 min (M10, M30), time spent in activity intensities from vector magnitude (VM) counts, and ENMO cut points and sleep metrics (sleep period time window, sleep duration, sleep onset, and waking time) were compared. Results: Excellent agreement was evident for average acceleration-Mean Amplitude Deviation, counts, total steps, M10, and light PA (VM counts) with good agreement evident from the remaining PA metrics apart from moderate–vigorous PA (VM counts) which demonstrated moderate agreement. Mean bias for all PA metrics were low, as were the limits of agreement for the intensity gradient, average acceleration-Mean Amplitude Deviation, and inactive time (ENMO and VM counts). The limits of agreement for all other PA metrics were >10%. Excellent agreement, low mean bias, and narrow limits of agreement were evident for all sleep metrics. All sleep and PA metrics demonstrated equivalence (equivalence zone of ≤10%) apart from moderate–vigorous PA (ENMO) which needed an equivalence zone of 16%. Conclusions: Equivalent estimates of almost all PA and sleep metrics are provided from the GT9X and wGT3X-BT worn on the nondominant wrist.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"19 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140521255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
agcounts: An R Package to Calculate ActiGraph Activity Counts From Portable Accelerometers.
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 Epub Date: 2024-04-26 DOI: 10.1123/jmpb.2023-0037
Brian C Helsel, Paul R Hibbing, Robert N Montgomery, Eric D Vidoni, Lauren T Ptomey, Jonathan Clutton, Richard A Washburn
{"title":"<i>agcounts</i>: An R Package to Calculate ActiGraph Activity Counts From Portable Accelerometers.","authors":"Brian C Helsel, Paul R Hibbing, Robert N Montgomery, Eric D Vidoni, Lauren T Ptomey, Jonathan Clutton, Richard A Washburn","doi":"10.1123/jmpb.2023-0037","DOIUrl":"10.1123/jmpb.2023-0037","url":null,"abstract":"<p><p>Portable accelerometers are used to capture physical activity in free-living individuals with the ActiGraph being one of the most widely used device brands in physical activity and health research. Recently, in February 2022, ActiGraph published their activity count algorithm and released a Python package for generating activity counts from raw acceleration data for five generations of ActiGraph devices. The nonproprietary derivation of the ActiGraph count improved the transparency and interpretation of accelerometer device-measured physical activity, but the Python release of the count algorithm does not integrate with packages developed by the physical activity research community using the R Statistical Programming Language. In this technical note, we describe our efforts to create an R-based translation of ActiGraph's Python package with additional extensions to make data processing easier and faster for end users. We call the resulting R package <i>agcounts</i> and provide an inside look at its key functionalities and extensions while discussing its prospective impacts on collaborative open-source software development in physical behavior research. We recommend that device manufacturers follow ActiGraph's lead by providing open-source access to their data processing algorithms and encourage physical activity researchers to contribute to the further development and refinement of <i>agcounts</i> and other open-source software.</p>","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Accelerometer Calibration on the Estimation of Objectively Measured Physical Activity: The Tromsø Study 加速度计校准对客观测量的体力活动量估算的影响:特罗姆瑟研究
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 DOI: 10.1123/jmpb.2023-0019
Marc Weitz, B. Morseth, L. Hopstock, Alexander Horsch
{"title":"Influence of Accelerometer Calibration on the Estimation of Objectively Measured Physical Activity: The Tromsø Study","authors":"Marc Weitz, B. Morseth, L. Hopstock, Alexander Horsch","doi":"10.1123/jmpb.2023-0019","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0019","url":null,"abstract":"Accelerometers are increasingly used to observe human behavior such as physical activity under free-living conditions. An important prerequisite to obtain reliable results is the correct calibration of the sensors. However, accurate calibration is often neglected, leading to potentially biased results. Here, we demonstrate and quantify the effect of accelerometer miscalibration on the estimation of objectively measured physical activity under free-living conditions. The total volume of moderate to vigorous physical activity (MVPA) was significantly reduced after post hoc auto-calibration for uniaxial and triaxial count data, as well as for Euclidean Norm Minus One and mean amplitude deviation raw data. Weekly estimates of MVPA were reduced on average by 5.5, 9.2, 45.8, and 4.8 min, respectively, when compared to the original uncalibrated estimates. Our results indicate a general trend of overestimating physical activity when using factory-calibrated sensors. In particular, the accuracy of estimates derived from the Euclidean Norm Minus One feature suffered from uncalibrated sensors. For all modalities, the more uncalibrated the sensor was, the more MVPA was overestimated. This might especially affect studies with lower sample sizes.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"32 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139631382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pre- Versus Postmeal Sedentary Duration—Impact on Postprandial Glucose in Older Adults With Overweight or Obesity 餐前与餐后静坐时间--对超重或肥胖老年人餐后血糖的影响
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 DOI: 10.1123/jmpb.2023-0032
Elizabeth Chun, I. Gaynanova, Edward L. Melanson, Kate Lyden
{"title":"Pre- Versus Postmeal Sedentary Duration—Impact on Postprandial Glucose in Older Adults With Overweight or Obesity","authors":"Elizabeth Chun, I. Gaynanova, Edward L. Melanson, Kate Lyden","doi":"10.1123/jmpb.2023-0032","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0032","url":null,"abstract":"Introduction: Reducing sedentary time is associated with improved postprandial glucose regulation. However, it is not known if the timing of sedentary behavior (i.e., pre- vs. postmeal) differentially impacts postprandial glucose in older adults with overweight or obesity. Methods: In this secondary analysis, older adults (≥65 years) with overweight and obesity (body mass index ≥ 25 kg/m2) wore a continuous glucose monitor and a sedentary behavior monitor continuously in their real-world environments for four consecutive days on four separate occasions. Throughout each 4-day measurement period, participants followed a standardized eucaloric diet and recorded mealtimes in a diary. Glucose, sedentary behavior, and meal intake data were fused using sensor and diary timestamps. Mixed-effect linear regression models were used to evaluate the impact of sedentary timing relative to meal intake. Results: Premeal sedentary time was significantly associated with both the increase from premeal glucose to the postmeal peak (ΔG) and the percent of premeal glucose increase that was recovered 1-hr postmeal glucose peak (%Baseline Recovery; p < .05), with higher levels of premeal sedentary time leading to both a larger ΔG and a smaller %Baseline Recovery. Postmeal sedentary time was significantly associated with the time from meal intake to glucose peak (ΔT; p < .05), with higher levels of postmeal sedentary time leading to a longer time to peak. Conclusions: Pre- versus postmeal sedentary behavior differentially impacts postprandial glucose response in older adults with overweight or obesity, suggesting that the timing of sedentary behavior reductions might play an influential role on long-term glycemic control.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140523370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Criterion Validity of Accelerometers in Determining Knee-Flexion Angles During Sitting in a Laboratory Setting 加速度计在实验室环境中测定坐姿时膝屈角的标准有效性
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 DOI: 10.1123/jmpb.2023-0027
Yanlin Wu, M. O'Brien, Alex Peddle, W. S. Daley, Beverly D. Schwartz, D. Kimmerly, Ryan J. Frayne
{"title":"Criterion Validity of Accelerometers in Determining Knee-Flexion Angles During Sitting in a Laboratory Setting","authors":"Yanlin Wu, M. O'Brien, Alex Peddle, W. S. Daley, Beverly D. Schwartz, D. Kimmerly, Ryan J. Frayne","doi":"10.1123/jmpb.2023-0027","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0027","url":null,"abstract":"Introduction: Device-based monitors often classify all sedentary positions as the sitting posture, but sitting with bent or straight legs may exhibit unique physiological and biomechanical effects. The classifications of the specific nuances of sitting have not been understood. The purpose of this study was to validate a dual-monitor approach from a trimonitor configuration measuring knee-flexion angles compared to motion capture (criterion) during sitting in laboratory setting. Methods: Nineteen adults (12♀, 24 ± 4 years) wore three activPALs (torso, thigh, tibia) while 14 motion capture cameras simultaneously tracked 15 markers located on bony landmarks. Each participant completed a 45-s supine resting period and eight, 45-s seated trials at different knee flexion angles (15° increment between 0° and 105°, determined via goniometry), followed by 15 s of standing. Validity was assessed via Friedman’s test (adjusted p value = .006), mean absolute error, Bland–Altman analyses, equivalence testing, and intraclass correlation. Results: Compared to motion capture, the calculated angles from activPALs were not different during 15°–90° (all, p ≥ .009), underestimated at 105° (p = .002) and overestimated at 0°, as well as the supine position (both, p < .001). Knee angles between 15° and 105° exhibited a mean absolute error of ∼5°, but knee angles <15° exhibited larger degrees of error (∼10°). A proportional (β = −0.12, p < .001) bias was observed, but a fixed (0.5° ± 1.7°, p = .405) bias did not exist. In equivalence testing, the activPALs were statistically equivalent to motion capture across 30°–105°. Strong agreement between the activPALs and motion capture was observed (intraclass correlation = .97, p < .001). Conclusions: The usage of a three-activPAL configuration detecting seated knee-flexion angles in free-living conditions is promising.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"52 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139634467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparability of 24-hr Activity Cycle Outputs From ActiGraph Counts Generated in ActiLife and RStudio 在 ActiLife 和 RStudio 中生成的 ActiGraph 计数的 24 小时活动周期输出的可比性
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 DOI: 10.1123/jmpb.2023-0047
A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt
{"title":"Comparability of 24-hr Activity Cycle Outputs From ActiGraph Counts Generated in ActiLife and RStudio","authors":"A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt","doi":"10.1123/jmpb.2023-0047","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0047","url":null,"abstract":"Data from ActiGraph accelerometers have long been imported into ActiLife software, where the company’s proprietary “activity counts” were generated in order to understand physical behavior metrics. In 2022, ActiGraph released an open-source method to generate activity counts from any raw, triaxial accelerometer data using Python, which has been translated into RStudio packages. However, it is unclear if outcomes are comparable when generated in ActiLife and RStudio. Therefore, the authors’ technical note systematically compared activity counts and related physical behavior metrics generated from ActiGraph accelerometer data using ActiLife or available packages in RStudio and provides example code to ease implementation of such analyses in RStudio. In addition to comparing triaxial activity counts, physical behavior outputs (sleep, sedentary behavior, light-intensity physical activity, and moderate- to vigorous-intensity physical activity) were compared using multiple nonwear algorithms, epochs, cut points, sleep scoring algorithms, and accelerometer placement sites. Activity counts and physical behavior outcomes were largely the same between ActiLife and the tested packages in RStudio. However, peculiarities in the application of nonwear algorithms to the first and last portions of a data file (that occurred on partial, first or last days of data collection), differences in rounding, and handling of counts values on the borderline of activity intensities resulted in small but inconsequential differences in some files. The hope is that researchers and both hardware and software manufacturers continue to push efforts toward transparency in data analysis and interpretation, which will enhance comparability across devices and studies and help to advance fields examining links between physical behavior and health.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"109 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140515747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The KID Study (Kids Interacting With Dogs): Piloting a Novel Approach for Measuring Dog-Facilitated Youth Physical Activity KID 研究(儿童与狗互动):试行一种新方法来衡量由狗协助的青少年体育活动
Journal for the measurement of physical behaviour Pub Date : 2024-01-01 DOI: 10.1123/jmpb.2023-0014
Colleen J. Chase, S. Burkart, Katie Potter
{"title":"The KID Study (Kids Interacting With Dogs): Piloting a Novel Approach for Measuring Dog-Facilitated Youth Physical Activity","authors":"Colleen J. Chase, S. Burkart, Katie Potter","doi":"10.1123/jmpb.2023-0014","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0014","url":null,"abstract":"Background: Two-thirds of children in the United States do not meet the National Physical Activity Guidelines, leaving a majority at higher risk for negative health outcomes. Novel, effective children’s physical activity (PA) interventions are urgently needed. Dog-facilitated PA (e.g., dog walking and active play) is a promising intervention target, as dogs support many of the known correlates of children’s PA. There is a need for accurate methods of quantifying dog-facilitated PA. Purpose: The study purpose was to determine the feasibility and acceptability of a novel method for quantifying the volume and intensity of dog-facilitated PA among dog-owning children. Methods: Children and their dog(s) wore ActiGraph accelerometers with a Bluetooth proximity feature for 7 days. Additionally, parents logged child PA with the family dog(s). Total minutes of dog-facilitated PA and percentage of overall daily moderate to vigorous PA performed with the dog were calculated. Results: Twelve children (mean age = 7.8 ± 2.9 years) participated. There was high feasibility, with 100% retention, valid device data (at least 4 days ≥6-hr wear time), and completion of daily parent log and questionnaire packets. On average, dog-facilitated PA contributed 22.9% (9.2 min) and 15.1% (7.3 min) of the overall daily moderate to vigorous PA for children according to Bluetooth proximity data and parent report, respectively. Conclusions: This pilot study demonstrated the feasibility of utilizing an accelerometer with a proximity feature to quantify dog-facilitated PA. Future research should use this protocol with a larger, more diverse sample to determine whether dog-facilitated PA contributes a clinically significant amount toward overall PA in dog-owning youth.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"23 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140526763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Physical Behaviors During Periods of Accelerometer Wear and Nonwear in College Students 了解大学生佩戴和未佩戴加速度计期间的身体行为
Journal for the measurement of physical behaviour Pub Date : 2023-12-01 DOI: 10.1123/jmpb.2023-0034
A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt
{"title":"Understanding Physical Behaviors During Periods of Accelerometer Wear and Nonwear in College Students","authors":"A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt","doi":"10.1123/jmpb.2023-0034","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0034","url":null,"abstract":"Accelerometers are increasingly used to measure 24-hr movement behaviors but are sometimes removed intermittently (e.g., for sleep or bathing), resulting in missing data. This study compared physical behaviors between times a hip-placed accelerometer was worn versus not worn in a college student sample. Participants (n = 115) wore a hip-placed ActiGraph during waking times and a thigh-placed activPAL continuously for at least 7 days (mean ± SD 7.5 ± 1.1 days). Thirteen nonwear algorithms determined ActiGraph nonwear; days included in the analysis had to have at least 1 min where the ActiGraph classified nonwear while participant was classified as awake by the activPAL. activPAL data for steps, time in sedentary behaviors (SB), light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA) from ActiGraph wear times were then compared with activPAL data from ActiGraph nonwear times. Participants took more steps (10.2–11.8 steps/min) and had higher proportions of MVPA (5.0%–5.9%) during ActiGraph wear time than nonwear time (3.1–8.0 steps/min, 0.8%–1.3% in MVPA). Effects were variable for SB (62.6%–66.9% of wear, 45.5%–76.2% of nonwear) and LPA (28.2%–31.5% of wear, 23.0%–53.2% of nonwear) depending on nonwear algorithm. Rescaling to a 12-hr day reduced SB and LPA error but increased MVPA error. Requiring minimum wear time (e.g., 600 min/day) reduced error but resulted in 10%–22% of days removed as invalid. In conclusion, missing data had minimal effect on MVPA but resulted in underestimation of SB and LPA. Strategies like scaling SB and LPA, but not MVPA, may improve physical behavior estimates from incomplete accelerometer data.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":" 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138614754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiautomatic Training Load Determination in Endurance Athletes 耐力运动员半自动训练负荷测定
Journal for the measurement of physical behaviour Pub Date : 2023-09-01 DOI: 10.1123/jmpb.2023-0016
Christophe Dausin, Sergio Ruiz-Carmona, Ruben De Bosscher, Kristel Janssens, Lieven Herbots, Hein Heidbuchel, Peter Hespel, Véronique Cornelissen, Rik Willems, André La Gerche, Guido Claessen, _ _
{"title":"Semiautomatic Training Load Determination in Endurance Athletes","authors":"Christophe Dausin, Sergio Ruiz-Carmona, Ruben De Bosscher, Kristel Janssens, Lieven Herbots, Hein Heidbuchel, Peter Hespel, Véronique Cornelissen, Rik Willems, André La Gerche, Guido Claessen, _ _","doi":"10.1123/jmpb.2023-0016","DOIUrl":"https://doi.org/10.1123/jmpb.2023-0016","url":null,"abstract":"Background : Despite endurance athletes recording their training data electronically, researchers in sports cardiology rely on questionnaires to quantify training load. This is due to the complexity of quantifying large numbers of training files. We aimed to develop a semiautomatic postprocessing tool to quantify training load in clinical studies. Methods : Training data were collected from two prospective athlete’s heart studies (Master Athlete’s Heart study and Prospective Athlete Heart study). Using in-house developed software, maximal heart rate (MaxHR) and training load were calculated from heart rate monitored during cumulative training sessions. The MaxHR in the lab was compared with the MaxHR in the field. Lucia training impulse score, based on individually based exercise intensity zones, and Edwards training impulse, based on MaxHR in the field, were compared. A questionnaire was used to determine the number of training sessions and training hours per week. Results : Forty-three athletes recorded their training sessions using a chest-worn heart rate monitor and were selected for this analysis. MaxHR in the lab was significantly lower compared with MaxHR in the field (183 ± 12 bpm vs. 188 ± 13 bpm, p < .01), but correlated strongly ( r = .81, p < .01) with acceptable limits of agreement (±15.4 bpm). An excellent correlation was found between Lucia training impulse score and Edwards training impulse ( r = .92, p < .0001). The quantified number of training sessions and training hours did not correlate with the number of training sessions ( r = .20) and training hours ( r = −.12) reported by questionnaires. Conclusion : Semiautomatic measurement of training load is feasible in a wide age group. Standard exercise questionnaires are insufficiently accurate in comparison to objective training load quantification.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135347919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信