A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt
{"title":"Understanding Physical Behaviors During Periods of Accelerometer Wear and Nonwear in College Students","authors":"A. Montoye, Kimberly A. Clevenger, Benjamin D. Boudreaux, Michael D. Schmidt","doi":"10.1123/jmpb.2023-0034","DOIUrl":null,"url":null,"abstract":"Accelerometers are increasingly used to measure 24-hr movement behaviors but are sometimes removed intermittently (e.g., for sleep or bathing), resulting in missing data. This study compared physical behaviors between times a hip-placed accelerometer was worn versus not worn in a college student sample. Participants (n = 115) wore a hip-placed ActiGraph during waking times and a thigh-placed activPAL continuously for at least 7 days (mean ± SD 7.5 ± 1.1 days). Thirteen nonwear algorithms determined ActiGraph nonwear; days included in the analysis had to have at least 1 min where the ActiGraph classified nonwear while participant was classified as awake by the activPAL. activPAL data for steps, time in sedentary behaviors (SB), light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA) from ActiGraph wear times were then compared with activPAL data from ActiGraph nonwear times. Participants took more steps (10.2–11.8 steps/min) and had higher proportions of MVPA (5.0%–5.9%) during ActiGraph wear time than nonwear time (3.1–8.0 steps/min, 0.8%–1.3% in MVPA). Effects were variable for SB (62.6%–66.9% of wear, 45.5%–76.2% of nonwear) and LPA (28.2%–31.5% of wear, 23.0%–53.2% of nonwear) depending on nonwear algorithm. Rescaling to a 12-hr day reduced SB and LPA error but increased MVPA error. Requiring minimum wear time (e.g., 600 min/day) reduced error but resulted in 10%–22% of days removed as invalid. In conclusion, missing data had minimal effect on MVPA but resulted in underestimation of SB and LPA. Strategies like scaling SB and LPA, but not MVPA, may improve physical behavior estimates from incomplete accelerometer data.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":" 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2023-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accelerometers are increasingly used to measure 24-hr movement behaviors but are sometimes removed intermittently (e.g., for sleep or bathing), resulting in missing data. This study compared physical behaviors between times a hip-placed accelerometer was worn versus not worn in a college student sample. Participants (n = 115) wore a hip-placed ActiGraph during waking times and a thigh-placed activPAL continuously for at least 7 days (mean ± SD 7.5 ± 1.1 days). Thirteen nonwear algorithms determined ActiGraph nonwear; days included in the analysis had to have at least 1 min where the ActiGraph classified nonwear while participant was classified as awake by the activPAL. activPAL data for steps, time in sedentary behaviors (SB), light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA) from ActiGraph wear times were then compared with activPAL data from ActiGraph nonwear times. Participants took more steps (10.2–11.8 steps/min) and had higher proportions of MVPA (5.0%–5.9%) during ActiGraph wear time than nonwear time (3.1–8.0 steps/min, 0.8%–1.3% in MVPA). Effects were variable for SB (62.6%–66.9% of wear, 45.5%–76.2% of nonwear) and LPA (28.2%–31.5% of wear, 23.0%–53.2% of nonwear) depending on nonwear algorithm. Rescaling to a 12-hr day reduced SB and LPA error but increased MVPA error. Requiring minimum wear time (e.g., 600 min/day) reduced error but resulted in 10%–22% of days removed as invalid. In conclusion, missing data had minimal effect on MVPA but resulted in underestimation of SB and LPA. Strategies like scaling SB and LPA, but not MVPA, may improve physical behavior estimates from incomplete accelerometer data.