JCIS openPub Date : 2022-10-01DOI: 10.1016/j.jciso.2022.100058
Jessika Pazol , Thomas M. Weiss , Cristian D. Martínez , Orestes Quesada , Eduardo Nicolau
{"title":"The influence of calcium ions (Ca2+) on the enzymatic hydrolysis of lipopolysaccharide aggregates to liberate free fatty acids (FFA) in aqueous solution","authors":"Jessika Pazol , Thomas M. Weiss , Cristian D. Martínez , Orestes Quesada , Eduardo Nicolau","doi":"10.1016/j.jciso.2022.100058","DOIUrl":"10.1016/j.jciso.2022.100058","url":null,"abstract":"<div><p>The chemical environment in aqueous solutions greatly influences the ability of amphiphilic molecules such as lipopolysaccharides (LPS) to aggregate into different structural phases in aqueous solutions. Understanding the substrate's morphology and conditions of aqueous solution that favor both enzymatic activity and the disruption of LPS aggregates are crucial in developing agents that can counteract the new trend of multidrug resistance by gram-negative bacteria. In this study, we developed two LPS morphologies using LPS from <em>Escherichia coli</em> as a model to study the <em>in vitro</em> hydrolytic response when using a lipase treatment. The hydrolysis was performed using lipase b from <em>Candida antarctica</em> to understand the catalytic effect in removing fatty acids from its lipid A moiety on different LPS aggregates. Physical and chemical characterizations of the products included dynamic light scattering, small angle X-ray scattering, Fourier transform infrared spectroscopy, thin-layer chromatography, and gas chromatography. Our results suggest a trend of prominent hydrolytic response (72% enhancement) upon the addition of calcium ions to induce LPS aggregates into bilayer formations. Moreover, our results revealed the detection of myristic acid (C14:0) as the product of the hydrolysis when using RaLPS in its aggregate forms.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"7 ","pages":"Article 100058"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dd/2e/nihms-1877286.PMC10433262.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10421857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCIS openPub Date : 2022-10-01DOI: 10.1016/j.jciso.2022.100059
Mohammad Shakourian , Saeed Rahemi Ardekani , Amir Bayat , Esmaiel Saievar-Iranizad , Wim Deferme
{"title":"Ultrasonic atomization based fabrication of superhydrophobic and corrosion-resistant hydrolyzed MTMS/PVDF coatings","authors":"Mohammad Shakourian , Saeed Rahemi Ardekani , Amir Bayat , Esmaiel Saievar-Iranizad , Wim Deferme","doi":"10.1016/j.jciso.2022.100059","DOIUrl":"10.1016/j.jciso.2022.100059","url":null,"abstract":"<div><p>A stable self-cleaning superhydrophobic coating with reliable corrosion resistance was coated on the aluminum alloy 6061. A dense polyvinylidene fluoride (PVDF) layer was first coated by the doctor blade method, and hydrolyzed methyltrimethoxysilane (HMTMS) nanospheres were then deposited on top of the PVDF using ultrasonic spray hydrolysis technique. Superhydrophobic coatings with a contact angle (CA) of 167° and a sliding angle of 7 ± 1° were obtained. The superhydrophobic coating exhibited self-cleaning behavior. The corrosion resistance of the layers was investigated in a 3.5 wt% NaCl aqueous solution using potentiodynamic polarization measurement and electrochemical impedance spectroscopy techniques, indicating the high corrosion resistance of the flat PVDF barrier and the excellent resistance of the superhydrophobic coating. The charge transfer resistance of the bare aluminum substrate measured as 6.572 kΩ cm<sup>2</sup> increased to 848.463 kΩ cm<sup>2</sup> and 3.411 × 10<sup>3</sup> kΩ cm<sup>2</sup> with PVDF and HMTMS, respectively. The results showed that a proper superhydrophobic coating with good chemical stability could significantly increase the corrosion resistance of the substrate. We also showed the capability of the novel ultrasonic spray hydrolysis technique in fabricating stable superhydrophobic films for large-scale applications.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"7 ","pages":"Article 100059"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000174/pdfft?md5=1feab1c45b15bc269eaa3df5e8c619d8&pid=1-s2.0-S2666934X22000174-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44962780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCIS openPub Date : 2022-10-01DOI: 10.1016/j.jciso.2022.100057
Elena S. Kartashynska , Dieter Vollhardt
{"title":"Molecular area dependences of monolayers at the air/water interface","authors":"Elena S. Kartashynska , Dieter Vollhardt","doi":"10.1016/j.jciso.2022.100057","DOIUrl":"10.1016/j.jciso.2022.100057","url":null,"abstract":"<div><p>The quantum chemical approach and a thermodynamic model for amphiphilic monolayers are used to find the temperature dependence of the area per amphiphile molecule in a monolayer at the onset of liquid-expanded – liquid-condensed phase transition (A<sub>c</sub>). Quantum chemical calculations within the semiempiric PM3 method for clusterization thermodynamics and structure of surfactant dimers and trimers are used, as well as for assessment of their molecular area in an aggregate. Calculations are done for seven amphiphile classes: saturated and ethoxylated alcohols, saturated and unsaturated carboxylic acids, α-hydroxylic acids, <em>N</em>-acyl-substituted alanine and dialkyl-substituted melamine that are well experimentally explored. Calculations reflect the experimental data and show that a temperature increase leads to decrease of A<sub>c</sub> for an amphiphile with a given alkyl chain length, and vice versa with a chain length increase at a fixed temperature the A<sub>c</sub> value grows. It was shown that as the temperature increases the increment of A<sub>c</sub> per methylene unit of the hydrocarbon chain becomes less significant. The average values of the slope reflecting the change of A<sub>c</sub> per 1 °C for saturated and ethoxylated alcohols, saturated, <em>cis</em>- and <em>trans</em>-unsaturated carboxylic acids, α-hydroxylic acids, <em>N</em>-acyl-substituted alanine and dialkyl-substituted melamine are 0.57, 1.32, 1.14, 1.26, 1.15, 0.66, 1.07 and 0.67 Å<sup>2</sup>/°С, respectively. These data are quite similar to the experimental values of <span><math><mrow><mo>−</mo><mfrac><mrow><mi>d</mi><msub><mi>A</mi><mi>c</mi></msub></mrow><mrow><mi>d</mi><mi>T</mi></mrow></mfrac></mrow></math></span> for tetradecanoic acid, dipalmitoyl-phosphatidylcholine and dipalmitoyl phosphatididic acid. The proposed approach can be used as a predictive tool for amphiphiles lacking experimental data.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"7 ","pages":"Article 100057"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000150/pdfft?md5=6298d3dbf0314be231dcd5b10bdae763&pid=1-s2.0-S2666934X22000150-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47304648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigations on the role of ionic liquid on the physicochemical characteristics and toxicological consequences of liposomes","authors":"Manas Kumar Mandal , Emili Manna , Habiba Sultana , Manas Barai , Kartik Chandra Guchhait , Chandradipa Ghosh , Anuttam Patra , Kaushik Nag , Shin-ichi Yusa , Amiya Kumar Panda","doi":"10.1016/j.jciso.2022.100050","DOIUrl":"10.1016/j.jciso.2022.100050","url":null,"abstract":"<div><p>Effect of 1-butyl-3-methylimidazolium chloride ionic liquid ([bmim]Cl, IL) on the monolayer/bilayer of either soy-phosphatidylcholine (SPC) or hydrogenated soy-phosphatidylcholine (HSPC), in combination with 30 mol% cholesterol (Chol), were investigated. Impact of IL on monolayers were explored by measuring the surface pressure (<em>π</em>)-area (<em>A</em>) isotherm with a Langmuir-surface balance. Lift-off area (<em>A</em><sub>0</sub>) of the monomolecular films gradually increased [<em>A</em><sub>0(HSPC+IL)</sub> > <em>A</em><sub>0(SPC+IL)</sub>], collapse pressures (<em>π</em><sub>c</sub>) decreased and passed through minima [<em>π</em><sub>c(HSPC+IL)</sub> > <em>π</em><sub>c(SPC+IL)</sub>] with increasing IL concentration ([IL]). Minimum molecular area (<em>A</em><sub>min</sub>) increased monotonously and compression moduli (<em>C</em><sub><em>s</em></sub><sup>−1</sup>) followed the sequence (HSPC+IL) > (SPC+IL) at a particular <em>π</em> with respect to [IL]. Dynamic light scattering studies were carried out to determine the hydrodynamic diameter (<em>d</em><sub>h</sub>), zeta potential (<em>Z.P.</em>) and polydispersity index (<em>PDI</em>) values while fluorescence anisotropy studies, using 7-hydroxycoumarin and 1,6-diphenyl-1,3,5-hexatriene, could reveal the micro-viscosity of liposomes. Increased size and rigidity, induced by IL, suggest the formation of leak-proof, condensed liposomes. Disruption of vesicles induced by IL were observed from transmission electron microscopic (TEM) studies. IL induced disintegration of liposome and kinetics of subsequent formation of adsorbed monolayer were accomplished by surface pressure-time isotherms. IL-induced liposomes were substantially less toxic as revealed by MTT assay. These liposomes are considered to be safely used as effective and controlled drug delivery systems.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"6 ","pages":"Article 100050"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000083/pdfft?md5=b3c031b8bc57faa170728c813422837f&pid=1-s2.0-S2666934X22000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46542317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCIS openPub Date : 2022-07-01DOI: 10.1016/j.jciso.2022.100052
Matthäus Barasinski , Carsten Schilde , Sebastian Melzig , Merle Hübner , Georg Garnweitner , Sabrina Zellmer
{"title":"Micromechanical properties of spray-dried core-shell silica aggregates along with drug release tests","authors":"Matthäus Barasinski , Carsten Schilde , Sebastian Melzig , Merle Hübner , Georg Garnweitner , Sabrina Zellmer","doi":"10.1016/j.jciso.2022.100052","DOIUrl":"10.1016/j.jciso.2022.100052","url":null,"abstract":"<div><p>In order to enhance the quality of spray-dried products or to adjust material properties for new applications, precise control of the aggregate structure is desirable. For the purpose of preparing hierarchically structured aggregates in the micrometer range, the formulation of the suspension can be specifically designed, utilizing defined nanoparticulate building blocks to achieve a highly uniform structure and porosity. Further adjustments can be made by combining two types of primary particles that differ in size. Thereby, a segregation effect is observed, where nanoparticles with larger particle sizes accumulate rather within the core of an aggregate and those with smaller particle sizes gather mainly near the outer surface, resulting in the formation of a shell. Furthermore, it is possible to produce tailor-made porosities using template particles (e.g. polystyrene) of different sizes as part of the coarse and fine fractions. The removal of these particles by a subsequent tempering process can lead to aggregates with defined porous structures and thus, to different mechanical aggregate properties that can be specifically set by adjusting the process and formulation parameters. As a result, a promising building kit for the hierarchically structure formation via spray drying processes were achieved.</p><p>For the detailed characterization structural and mechanical material properties were investigated, using e.g. mercury intrusion and SEM. The influence of the formulation parameters of the suspension (primary particle size and template content) on the micromechanical properties of the aggregate structures was systematically investigated by nanoindentation to elucidate structure-property relationships regarding, for example elastic and plastic deformation. As a result, a correlation could be established between the experimentally determined mechanical parameters and the aggregate porosities.</p><p>Such microstructures with defined properties can be used in a variety of applications, including catalysis or as drug carriers. For instance, these spray-dried aggregates were loaded with ibuprofen as an exemplary active pharmaceutical ingredient and investigated with regard to their drug release behavior.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"6 ","pages":"Article 100052"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000101/pdfft?md5=08cbe6160eba2117836b718916e5947a&pid=1-s2.0-S2666934X22000101-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44110984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCIS openPub Date : 2022-07-01DOI: 10.1016/j.jciso.2022.100048
Masahiko Ishii, Hiroshi Nakamura
{"title":"Influence of molecular weight and concentration of carboxymethyl cellulose on rheological properties of concentrated anode slurries for lithium-ion batteries","authors":"Masahiko Ishii, Hiroshi Nakamura","doi":"10.1016/j.jciso.2022.100048","DOIUrl":"10.1016/j.jciso.2022.100048","url":null,"abstract":"<div><p>The detailed behavior of carboxymethyl cellulose (CMC) as a dispersant in model anode slurries for lithium-ion batteries was investigated. Slurries with different graphite and CMC concentrations using three types of CMCs having different molecular weights were prepared, and changes in viscosity in the low shear rate range together with shear thickening in the high shear rate range were assessed. At a constant CMC concentration, the viscosities at low shear rates decreased as the graphite concentration was increased. Shear thickening was also more evident at low CMC concentrations and when using CMCs with lower molecular weights as well as at high graphite concentrations. These results suggest that, within the CMC concentration range investigated in the present work, the majority of the CMC was adsorbed on the graphite particles and this adsorbed CMC affected the rheological properties of the slurry. Increases in graphite concentration decreased the amount of adsorbed CMC per graphite particle, which in turn lowered the viscosity in the low shear rate range and enhanced shear thickening in the high shear rate range. The adsorbed CMC affected the slurry viscosity via electrostatic and steric interactions at low shear rates and acted as a buffer to inhibit shear thickening at high shear rates, primarily as a result of steric effects.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"6 ","pages":"Article 100048"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X2200006X/pdfft?md5=5e297f19ed935f6aa4a5d884f73fb70c&pid=1-s2.0-S2666934X2200006X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46963057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCIS openPub Date : 2022-07-01DOI: 10.1016/j.jciso.2022.100053
Sunil D. Kulkarni , Smita D. Takawane , Prasad C. Walimbe , Kiran D. Takale , Preeti S. Kulkarni
{"title":"Recognition of spatiotemporal patterns of the periodically precipitating 2D reaction-diffusion system by determination of precise band location: Implications on the Matalon-Packter law","authors":"Sunil D. Kulkarni , Smita D. Takawane , Prasad C. Walimbe , Kiran D. Takale , Preeti S. Kulkarni","doi":"10.1016/j.jciso.2022.100053","DOIUrl":"10.1016/j.jciso.2022.100053","url":null,"abstract":"<div><p>Recently focus of studies on the periodic precipitation in gels is shifting from evaluation of its spatio-temporal characteristics of the self-organized patterns to that of as a novel and viable method of synthesis of hierarchical monodispersed micro and nanomaterials in a single reactor. One of the parameters that profoundly affect the morphology, shape, size, and self-organization in the chemical systems is the supersaturation of the participating species. The Matalon-Packter (MP) law correlates the effect of the concentration of invading electrolytes to the spatial patterning in the Liesegang system. Although concentration and supersaturation have quantitative relations, the implications of supersaturation on the spatial arrangement of the band are not entirely understood. The present paper deals with studies on the periodically precipitating Co(OH)<sub>2</sub> in agar gel with respect to supersaturation of the participating reactants during the pattern formation. Varying inner and outer electrolytes concentrations were employed to determine spatial trends. Pattern image analysis was used to determine the precise location of the Liesegang bands. The supersaturation values showed a decreasing trend as the diffusion progressed outward. The present study led to the correlation between the supersaturation and the spacing coefficient.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"6 ","pages":"Article 100053"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000113/pdfft?md5=c49b55f71601b29f53afdbf4e6aba066&pid=1-s2.0-S2666934X22000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48212451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Target polishing of KDP crystals by organic acid-ionic liquid-in-oil microemulsions","authors":"Hui Dong, Jinlong Pan, Shuke Huang, Pengfei Sun, Wei Gao","doi":"10.1016/j.jciso.2022.100049","DOIUrl":"10.1016/j.jciso.2022.100049","url":null,"abstract":"<div><p>Chemical polishing is an effective method to remove a subsurface damage layer with the advantages of no mechanical stress and no new subsurface damage. In this paper, we report a target polishing method that employs an anhydrous organic acid-ionic liquid-in-oil (OA-IL/O) microemulsion as the etching solution for chemical polishing of KDP crystals. OA-IL/O microemulsions were prepared with 1-butyl-3-methyl imidazolium bis [(trifluoromethyl) sulfonyl] imide ([Bmim]TF<sub>2</sub>N) and bis (trifluoromethane sulfonimide) (TF<sub>2</sub>NH) as the internal phase, castor oil as the external phase, TX-100 as the surfactant, and n-butanol as the co-surfactant. TF<sub>2</sub>NH irreversibly reacts with KDP when microemulsion micelles driven by Brownian motion collide with the KDP surface. The organic salt products are removed by the ionic liquid in the microemulsion, resulting in the effective elimination of KDP. Moreover, the organic acid-ionic liquid solution will preferentially diffuse to the high points of the KDP surface and react with the KDP to achieve the target polishing. As a new type of water-free surface polishing technology, OA-IL/O microemulsion not only has the advantages of traditional CMP, but also avoids the recrystallization that can occur with water-in-oil microemulsions and achieves target polishing of the KDP crystal.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"6 ","pages":"Article 100049"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000071/pdfft?md5=e3d2cd408347b268ef7c72ce0945bb95&pid=1-s2.0-S2666934X22000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45187317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pattern selection in radial displacements of a confined aging viscoelastic fluid","authors":"Palak, Vaibhav Raj Singh Parmar, Debasish Saha, Ranjini Bandyopadhyay","doi":"10.1016/j.jciso.2022.100047","DOIUrl":"10.1016/j.jciso.2022.100047","url":null,"abstract":"<div><p>Intricate fluid displacement patterns, arising from the unstable growth of interfacial perturbations, can be driven by fluid viscoelasticity and surface tension. A soft glassy suspension ages, <em>i.e.</em> its mechanical moduli evolve with time, due to the spontaneous formation of suspension microstructures. The shear and time-dependent rheology of an aging suspension can be exploited to generate a wide variety of interfacial patterns during its displacement by a Newtonian fluid. Using video imaging, we report a rich array of interfacial pattern morphologies: dense viscous, dendritic, viscoelastic fracture, flower-shaped, jagged and stable, during the miscible and immiscible displacements of an aging colloidal clay suspension by Newtonian fluids injected into a radial quasi-two-dimensional geometry at different flow rates. We propose a new parameter, the areal ratio, which we define as the fully developed pattern area normalized by the area of the smallest circle enclosing it. We show that the natural logarithms of the areal ratios uniquely identify the distinct pattern morphologies, such that each pattern can be segregated in a three-dimensional phase diagram spanned by the suspension aging time, the displacing fluid flow rate, and interfacial tension. Besides being of fundamental interest, our results are useful in predicting and controlling the growth of interfaces during fluid displacements.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"6 ","pages":"Article 100047"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000058/pdfft?md5=f09f6a66254fc891120be1763261a151&pid=1-s2.0-S2666934X22000058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43689617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JCIS openPub Date : 2022-07-01DOI: 10.1016/j.jciso.2022.100054
Nizamuddin Solangi , Jai Kumar , Gul Naz , Razium Ali Soomro
{"title":"The preparation of NiCo2O4 nanoboulders and their application in the electrochemical detection of ofloxacin drug","authors":"Nizamuddin Solangi , Jai Kumar , Gul Naz , Razium Ali Soomro","doi":"10.1016/j.jciso.2022.100054","DOIUrl":"10.1016/j.jciso.2022.100054","url":null,"abstract":"<div><p>A sensitive electroactive platform relies directly upon the efficient and conductive interface. This work offers a simple and effective method for synthesizing NiCo<sub>2</sub>O<sub>4</sub> using CTAB surfactant, suited for trace-level antibiotic detection. The route realized the controlled growth of tiny NiCo<sub>2</sub>O<sub>4</sub> nanoboulders with an exposed interface. A comparative evaluation of the bimetallic nanostructures with their pristine compositional counterparts, i.e., NiO and Co<sub>3</sub>O<sub>4</sub>, supports its superior electrochemical characteristics based on the synergism of strong redox activity and conductivity from the bimetallic components. The NiCo<sub>2</sub>O<sub>4</sub> nanoboulders exhibited strong electrochemical activity when configured as electrode material for detecting ofloxacin (OFL), a common antibiotic. The sensor exhibited excellent working linearity in a low-concentration range of 0.01–5 μM with a detection limit of 1 × 10<sup>−3</sup> μM for OFL. The kinetics of the NiCo<sub>2</sub>O<sub>4</sub> further supported the electrocatalytic oxidation of OFL to be diffusion controlled with an estimated diffusion coefficient of 2.03310<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>. Moreover, the constructed sensor is applicable for detecting OFL from environmental samples, reflecting its workability in complex real-environment.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"6 ","pages":"Article 100054"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000125/pdfft?md5=a91a742cfcf998d05e89d5e66f6ed042&pid=1-s2.0-S2666934X22000125-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45600770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}