JCIS open最新文献

筛选
英文 中文
Consolidation of carbonates using hydrolysed polyacrylamide: Effect of temperature, pressure, salinity, and nanoparticle crosslinking
JCIS open Pub Date : 2025-03-28 DOI: 10.1016/j.jciso.2025.100135
Jin Hau Lew , Omar K. Matar , Erich A. Müller , Adrielle Sousa Santos , Myo Thant Maung Maung , Paul F. Luckham
{"title":"Consolidation of carbonates using hydrolysed polyacrylamide: Effect of temperature, pressure, salinity, and nanoparticle crosslinking","authors":"Jin Hau Lew ,&nbsp;Omar K. Matar ,&nbsp;Erich A. Müller ,&nbsp;Adrielle Sousa Santos ,&nbsp;Myo Thant Maung Maung ,&nbsp;Paul F. Luckham","doi":"10.1016/j.jciso.2025.100135","DOIUrl":"10.1016/j.jciso.2025.100135","url":null,"abstract":"<div><div>This paper discusses a comprehensive three-part experimental study on the consolidation of calcium carbonate (CaCO<sub>3</sub>) via hydrolysed polyacrylamide (HPAM). The first part involves the consolidation ability of HPAM on CaCO<sub>3</sub> investigated under room conditions. The setups in this work are dilute (1:25 mass ratio of CaCO<sub>3</sub> to HPAM) and concentrated (1:2 mass ratio) colloidal systems, and an incubation of Iceland spar calcite crystal in dilute HPAM solution. UV–Vis absorption, zeta potential, oscillatory rheology in the form of storage modulus (G’), unconfined compression stress (UCS), and atomic force microscopy (AFM) force mapping, reveal positive interactions and increased consolidation with higher HPAM dosage, up to an optimum level. The second part explores the impact of reservoir conditions, namely salinity and temperature, on the consolidating ability of HPAM. Salinity tests indicate a higher polymer dosage requirement under increased salt concentration to maintain optimum CaCO<sub>3</sub> consolidation, while temperature tests show a reduction in peak mechanical strength of consolidated CaCO<sub>3</sub> samples. In the final part, the preservation of the effectiveness of deploying HPAM in reservoir conditions by crosslinking it with silica nanoparticles (SiONP) is explored. The results from G′ and UCS analyses demonstrate that CaCO<sub>3</sub> consolidated by crosslinked HPAM retains peak mechanical strength even when treated with brine and subjected to continuous heating for three days. This extensive investigation into the consolidation of CaCO<sub>3</sub> by HPAM provides valuable insights into the potential use of HPAM for strengthening reservoir rocks, with the novel approach of crosslinking showing promise for preserving its usability in challenging reservoir conditions.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143767955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy analysis of Hall-effect-driven TiO2−CoFe2O4/ engine oil-based hybrid nanofluid flow between spinning porous disks with thermal convective boundaries
JCIS open Pub Date : 2025-03-25 DOI: 10.1016/j.jciso.2025.100134
Sk Enamul , Surender Ontela
{"title":"Entropy analysis of Hall-effect-driven TiO2−CoFe2O4/ engine oil-based hybrid nanofluid flow between spinning porous disks with thermal convective boundaries","authors":"Sk Enamul ,&nbsp;Surender Ontela","doi":"10.1016/j.jciso.2025.100134","DOIUrl":"10.1016/j.jciso.2025.100134","url":null,"abstract":"<div><div>The applications of fluid dynamics and heat transfer between coaxial double-rotating disks are diverse and crucial across various engineering and scientific fields. This study is motivated by the growing need for efficient thermal management in advanced engineering applications, such as cooling systems, energy storage, and magnetohydrodynamic technologies. The research focuses on the heat transfer characteristics and entropy analysis of the flow of a second-grade hybrid nanofluid between two spinning porous disks, incorporating the effects of Hall currents, viscous dissipation, and thermal convective boundaries. The hybrid nanofluid consists of titanium dioxide and cobalt ferrite nanoparticles suspended in engine oil. The governing equations are transformed into non-dimensional forms using a similarity transformation and solved with the semi-analytical homotopy analysis method. Results reveal the effects of parameters on velocity, temperature profiles, Nusselt number, skin friction, entropy generation, and the Bejan number graphically. Notably, the temperature profile improves with increases in the Brinkman number and the thermal Biot number of the lower disk. In contrast, skin friction decreases with higher titanium dioxide volume fraction, porosity parameter, and magnetic field parameter. The heat transfer rate increases with a higher nanoparticle shape factor and magnetic field parameter. These findings offer significant implications for optimizing the thermal performance of nanofluids, particularly in advanced cooling systems, thermal energy storage, and magnetohydrodynamic applications where enhanced heat transfer and efficient thermal management are critical.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat transfer optimization in magnetohydrodynamic buoyancy-driven convective hybrid nanofluid with carbon nanotubes over a slippery rotating porous surface
JCIS open Pub Date : 2025-03-24 DOI: 10.1016/j.jciso.2025.100132
Thirupathi Thumma , Surender Ontela , Devarsu Radha Pyari , S.R. Mishra , Subhajit Panda
{"title":"Heat transfer optimization in magnetohydrodynamic buoyancy-driven convective hybrid nanofluid with carbon nanotubes over a slippery rotating porous surface","authors":"Thirupathi Thumma ,&nbsp;Surender Ontela ,&nbsp;Devarsu Radha Pyari ,&nbsp;S.R. Mishra ,&nbsp;Subhajit Panda","doi":"10.1016/j.jciso.2025.100132","DOIUrl":"10.1016/j.jciso.2025.100132","url":null,"abstract":"<div><div>Hybrid nanofluids containing carbon nanotubes possess the potential to augment thermal conductivity and are also employed in heat management applications. These nanofluids combine two kinds of nanostructures (single-wall and multi-wall) and have better energy conversion, cooling, and heat transmission qualities. Because of their tiny size and strength, carbon nanotubes (CNT) are used to increase machinery and components lubrication and boost system energy storage and charging cycle effectiveness of lithium-ion batteries. Therefore, a mathematical model is formulated to study the hydromagnetic CNT hybrid nanofluid mixed convective flow past an elongating porous surface in the occurrence of external heat source, thermal linear radiation, viscous and Joule dissipation. The nanoparticle diameter and interfacial layer effects are explored by incorporating the Gharesim dynamic viscosity model and Hamilton–Crosser thermal conductivity model. The partial differential equations (PDEs) defining the considered fluid flow are transformed into ordinary differential Equations (ODEs) utilizing predefined similarity transformations. The numerical Runge-Kutta method and shooting procedure are employed to obtain the outcomes. The current study establishes that the liquid momentum is controlled for the slip flow, thus with the slip condition, the amount of retardation is much higher in comparison with the no-slip condition, and the temperature of the hybrid nanofluid has been raised by a greater heat source coefficient and radiation factor. Further, the sensitivity and optimization analysis of the heat transmission rate is carried out using RSM with face-centered central composite design model of experiments. Sensitivity analysis reveals that the highest evaluated value 0.006330 of heat transmission rate is identified at the uncoded values <span><math><mrow><msub><mi>ϕ</mi><mtext>SWCNT</mtext></msub><mo>=</mo><mn>0.01</mn><mo>,</mo><msub><mi>ϕ</mi><mtext>MWCNT</mtext></msub><mo>=</mo><mn>0.01</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>0.10</mn></mrow></math></span> and the least value −0.002590 is identified at the uncoded values of <span><math><mrow><msub><mi>ϕ</mi><mtext>SWCNT</mtext></msub><mo>=</mo><mn>0.01</mn><mo>,</mo><msub><mi>ϕ</mi><mtext>MWCNT</mtext></msub><mo>=</mo><mn>0.03</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>0.10</mn></mrow></math></span></div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143738634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative characterization of the mass transfer of volatile amphiphiles between vapor and aqueous phases: Experiment vs theory
JCIS open Pub Date : 2025-03-19 DOI: 10.1016/j.jciso.2025.100133
Ralitsa I. Uzunova , Krassimir D. Danov , Rumyana D. Stanimirova , Theodor D. Gurkov
{"title":"Quantitative characterization of the mass transfer of volatile amphiphiles between vapor and aqueous phases: Experiment vs theory","authors":"Ralitsa I. Uzunova ,&nbsp;Krassimir D. Danov ,&nbsp;Rumyana D. Stanimirova ,&nbsp;Theodor D. Gurkov","doi":"10.1016/j.jciso.2025.100133","DOIUrl":"10.1016/j.jciso.2025.100133","url":null,"abstract":"<div><div>The class of volatiles, which possess low saturated vapor pressures, appreciable solubilities in water, and well pronounced surface activities, have gained wide applications in diverse areas of industry, cosmetics, and medicine. One way to qualitatively characterize their mass transfer between vapor and aqueous solutions is to measure the relaxation of the interfacial tension, <em>σ</em>, with time, <em>t</em>, under different nonequilibrium initial conditions. This approach is applied in the present work for geraniol and menthol. By means of combining <em>σ</em>(<em>t</em>) data with the respective equilibrium surface tension isotherms, the instantaneous values of the fragrance adsorption, Γ(<em>t</em>), have been determined. Quantitative characterization of the geraniol and menthol mass transfers in the case of adsorption from vapor to aqueous drops is achieved by using a mixed barrier-diffusion model. The obtained values of the rates of adsorption and desorption are compared with those reported in the literature for benzyl acetate, linalool, and citronellol. In the case of evaporation of the volatiles from their saturated aqueous solutions to the ambient atmosphere, the mass transfer is found to be driven both by mixed barrier-diffusion and by convection-enhanced mechanisms – depending on the air humidity. The quantitative description of the evaporation of volatile molecules is modelled theoretically by adsorption rate constants. In order to achieve the reported model representations, complex numerical calculations are implemented. On the other hand, having in mind the cases when one wishes to avoid extensive computational work, we developed a simple semiempirical model suitable for all five studied fragrances. This simplified approach is convenient for the express comparison and characterization of the evaporation rates. The obtained physicochemical parameters related to the evaporation and condensation of volatiles are important for the rigorous modeling of their complex mixed solutions of practical interest. The semiempirical model could be used for the quantitative classification of volatile molecules with respect to their ability to evaporate.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of pH and concentration on physicochemical, adsorption kinetics and rheology properties of quinoa protein: Functional correlations
JCIS open Pub Date : 2025-03-11 DOI: 10.1016/j.jciso.2025.100131
José Fernando Solanilla-Duque, Diego Fernando Roa-Acosta, Jesús Eduardo Bravo-Gómez
{"title":"Effect of pH and concentration on physicochemical, adsorption kinetics and rheology properties of quinoa protein: Functional correlations","authors":"José Fernando Solanilla-Duque,&nbsp;Diego Fernando Roa-Acosta,&nbsp;Jesús Eduardo Bravo-Gómez","doi":"10.1016/j.jciso.2025.100131","DOIUrl":"10.1016/j.jciso.2025.100131","url":null,"abstract":"<div><div>In the present manuscript protein isolates and hydrolysates have countless applications in the food industry due to their functional (solubility, emulsifying power, adsorption capacity, foaming capacity) and nutritional properties [1]. In the present manuscript, the interfacial, rheological, and functional properties of the quinoa protein isolate (QPI) at pH 5 and pH 7 were studied. Dilatational module behavior versus surface pressure was evaluated, using the Frumkin-Lucassen model for QPI, which showed a good fit in the first part of the curve (before achieving a plateau) evidencing the formation of the first interfacial layer. Moreover, the gel formation from QPI was evaluated at different concentrations (5, 10 and 15 % (w/w)). Rheological measurements indicated that higher protein concentrations at pH 5 resuts in a raise in the gel point temperature. It was also found that QPI showed better emulsifying and foaming capacity at pH 5 than at pH 7. An increase in the QPI concentration in the emulsion formulation produces greater thermal stability. The results obtained show the feasibility of using a quinoa protein isolate as an ingredient in functional foods (Modified (enriched or enhanced) foods, conventional foods, medicinal foods and foods for dietetic use.).</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143642480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic irreversibility in mixed convective MHD flow of radiative hybrid nanofluids with couple-stress effects
JCIS open Pub Date : 2025-03-07 DOI: 10.1016/j.jciso.2025.100130
Pungja Mushahary , Surender Ontela
{"title":"Thermodynamic irreversibility in mixed convective MHD flow of radiative hybrid nanofluids with couple-stress effects","authors":"Pungja Mushahary ,&nbsp;Surender Ontela","doi":"10.1016/j.jciso.2025.100130","DOIUrl":"10.1016/j.jciso.2025.100130","url":null,"abstract":"<div><div>The paper presents the analysis of the mixed convective flow of magnetohydrodynamic (MHD) couple stress hybrid nanofluid (CSHNF) in a porous vertical channel. The system is equipped with quadratic thermal radiation, an external heat source, and a uniform magnetic field. The study applies to advanced microchannel systems, microelectromechanical systems (MEMS) development, and lab-on-a-chip (LOC) technology. The irreversibility analysis of the system is based on the entropy generation number and the Bejan number. The considered hybrid nanofluid is processed by mixing multi-walled carbon nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi></mrow></math></span>) and silver (<span><math><mrow><mi>A</mi><mi>g</mi></mrow></math></span>) nanoparticles in a base fluid of ethylene glycol (<span><math><mrow><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>). The flow is induced by the pressure gradient force and the buoyancy force modeled through the Boussinesq approximation, characterizing it as mixed convective flow. The governing equations are nondimensionalized by applying relevant dimensionless parameters and solved using the homotopy analysis method (HAM). The obtained results are validated through existing results, ensuring consistency and reliability with established findings. The effects of different significant parameters on the velocity and temperature profiles and entropy generation rate are scrutinized. The analysis reveals that entropy generation degrades up to <span><math><mrow><mn>19</mn><mo>%</mo></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>%</mo></mrow></math></span> for the concentration and Darcy number range of <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mi>ϕ</mi><mi>i</mi></msub><mo>≤</mo><mn>0.02</mn></mrow></math></span> and <span><math><mrow><mn>0.1</mn><mo>≤</mo><mi>D</mi><mi>a</mi><mo>≤</mo><mn>0.9</mn></mrow></math></span>. In contrast, it enhances up to <span><math><mrow><mn>25</mn><mo>%</mo></mrow></math></span> and <span><math><mrow><mn>90</mn><mo>%</mo></mrow></math></span> for thermal radiation and convective conditions for the range <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mi>R</mi><mi>D</mi></msub><mo>≤</mo><mn>0.1</mn></mrow></math></span> and <span><math><mrow><mn>0.3</mn><mo>≤</mo><mi>B</mi><msub><mi>i</mi><mi>i</mi></msub><mo>≤</mo><mn>0.5</mn></mrow></math></span>. The heat transfer rate was reduced by about <span><math><mrow><mn>0.5</mn><mo>%</mo></mrow></math></span> and <span><math><mrow><mn>17</mn><mo>%</mo></mrow></math></span> at the parameter range <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mi>ϕ</mi><mi>i</mi></msub><mo>≤</mo><mn>0.02</mn></mrow></math></span> and <span><math><mrow><mn>0.1</mn><mo>≤</mo><msub><mi>Q</mi><mi>T</mi></msub><mo>≤</mo><mn>0.2</mn></mrow></math></span>.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"17 ","pages":"Article 100130"},"PeriodicalIF":0.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimising cellulose nanofiber extraction from water hyacinth (Eichhornia crassipes) stems: Effects of steam explosion pretreatment and ultrasonication time 优化从布袋莲(Eichhornia crassipes)茎中提取纤维素纳米纤维:汽爆预处理和超声时间的影响
JCIS open Pub Date : 2025-03-06 DOI: 10.1016/j.jciso.2025.100129
A. Muhammad Afdhal Saputra , Muhammad Ibadurrahman , Averroes Fazlur Rahman Piliang , Marpongahtun , Amanda Jiamin Ong , Ronn Goei , Alfred Iing Yoong Tok , Refi Ikhtiari , Saharman Gea , Cut Fatimah Zuhra
{"title":"Optimising cellulose nanofiber extraction from water hyacinth (Eichhornia crassipes) stems: Effects of steam explosion pretreatment and ultrasonication time","authors":"A. Muhammad Afdhal Saputra ,&nbsp;Muhammad Ibadurrahman ,&nbsp;Averroes Fazlur Rahman Piliang ,&nbsp;Marpongahtun ,&nbsp;Amanda Jiamin Ong ,&nbsp;Ronn Goei ,&nbsp;Alfred Iing Yoong Tok ,&nbsp;Refi Ikhtiari ,&nbsp;Saharman Gea ,&nbsp;Cut Fatimah Zuhra","doi":"10.1016/j.jciso.2025.100129","DOIUrl":"10.1016/j.jciso.2025.100129","url":null,"abstract":"<div><div>This study presents a highly efficient approach to isolate high-quality cellulose nanofibers (CNFs) from water hyacinth. The researchers employed a synergistic combination of steam explosion pretreatment and optimised ultrasonic fibrillation. The steam explosion pretreatment effectively disrupted the lignocellulosic structure, enhancing subsequent chemical and mechanical processing steps. Ultrasonic fibrillation for 1, 2, and 3 h yielded CNFs with average diameters of 24.3 nm, 12.05 nm, and 8.9 nm, respectively. The cellulose yield was 43.2 % from the steam-exploded sample, with 92–98 % CNF recovery. Comprehensive analyses revealed that the steam explosion pretreatment substantially improved the dispersion stability, crystallinity index (71 %), and the thermal stability (304 °C) of the CNFs as compared to the untreated fibres. The optimised chemical treatment further enhanced the CNF properties by removing lignin and hemicellulose components. The 1 h ultrasonic fibrillation of steam-exploded cellulose demonstrated superior efficiency, outperforming previous studies without pretreatment. Prolonged fibrillation had minimal impact on the CNF characteristics. This synergistic approach provides a highly effective and efficient method for isolating premium-quality CNFs from water hyacinth, with exceptional physical and thermal properties for advanced materials and composites. These findings pave the way for further exploration of water hyacinth-derived CNF's industrial potential.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"17 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isoelectric points of hydroxy double salts
JCIS open Pub Date : 2025-02-15 DOI: 10.1016/j.jciso.2025.100128
Marek Kosmulski
{"title":"Isoelectric points of hydroxy double salts","authors":"Marek Kosmulski","doi":"10.1016/j.jciso.2025.100128","DOIUrl":"10.1016/j.jciso.2025.100128","url":null,"abstract":"<div><div>Water-insoluble hydroxy double salts show pH-dependent surface-charging similar to that of metal oxides. While the pH-dependent surface-charging of metal oxides is very well-documented, the number of scientific papers reporting on the surface-charging of hydroxy double salts is limited. A collection of isoelectric points IEP of hydroxy double salts taken from the literature is presented. Electrokinetic behavior of paratacamite Cu<sub>2</sub>Cl(OH)<sub>3</sub> was studied experimentally, and its IEP was at pH about 8.5.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"17 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring efficiency and regeneration of magnetic zeolite synthesized from coal fly ash for water treatment applications
JCIS open Pub Date : 2024-12-15 DOI: 10.1016/j.jciso.2024.100127
Sofi Buzukashvili , Roberto Sommerville , Ozan Kökkılıç , Philippe Ouzilleau , Neil A. Rowson , Kristian E. Waters
{"title":"Exploring efficiency and regeneration of magnetic zeolite synthesized from coal fly ash for water treatment applications","authors":"Sofi Buzukashvili ,&nbsp;Roberto Sommerville ,&nbsp;Ozan Kökkılıç ,&nbsp;Philippe Ouzilleau ,&nbsp;Neil A. Rowson ,&nbsp;Kristian E. Waters","doi":"10.1016/j.jciso.2024.100127","DOIUrl":"10.1016/j.jciso.2024.100127","url":null,"abstract":"<div><div>This study investigates novel synthetic magnetic zeolites from coal fly ash (CFA) and laboratory-grade LTA zeolite enhanced with nano magnetite particles for the remediation of heavy metal ions (Pb<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, Ni<sup>2+</sup>) from wastewater. Utilizing a continuous flow system with a laboratory scale Wet High Intensity Magnetic Separator (WHIMS), heavy metal removal and magnetic particles’ recovery from the treated solution was investigated in a process that could be appropriate to real-world systems. The adsorption performance was investigated under various operational conditions, maintaining a consistent selectivity order of Pb &gt; Cu &gt; Zn &gt; Ni, repeating the selectivity order found in previous study of magnetic CFA zeolite in batch systems. Moreover, magnetic CFA zeolite was shown to be a more effective adsorbent when compared to magnetic LTA zeolite. Thus, when tested in continuous flow system under selected conditions, magnetic CFA zeolite removed 63 % Pb, 37 % Cu, 13 % Zn, and 7 % Ni while magnetic LTA zeolite removed 25 % Pb, 16 % Cu, 6 % Zn, and 3 % Ni. Furthermore, treated solution that passed through WHIMS did not contain any zeolite particles, as they were successfully captured in the metal grid.</div><div>Additionally, regeneration of metal-laden magnetic zeolites through desorption experiments was investigated by enhancing the ion-exchange process using a saturated NaCl solution. The results indicated that Pb, Zn, and Ni ions were fully desorbed from magnetic zeolite, while approximately 70 % of the Cu remained to the sample. The Cu remained in the sample may be attributed to its partial adsorption onto the carbonized binder, a highly oxygenated graphenic structure, which does not readily release the adsorbed Cu ions. As these findings highlight the difference between adsorption and desorption selectivity order, further investigation into the topic would be beneficial.</div><div>This research underscores the operational advantages of using magnetic LTA and CFA zeolites in industrial water treatment applications, illustrating their high adsorption capacity and straightforward desorption processes.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"17 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blending induced variations in Poloxamer's/Pluronic's® gelation: Thermodynamic and rheological perspectives Poloxamer's/Pluronic's® 凝胶化中的混合诱导变化:热力学和流变学视角
JCIS open Pub Date : 2024-11-12 DOI: 10.1016/j.jciso.2024.100126
Mohammad Qutub, Amol Tatode, Tanvi Premchandani, Jayshree Taksande, Dadaso Mane, Milind Umekar
{"title":"Blending induced variations in Poloxamer's/Pluronic's® gelation: Thermodynamic and rheological perspectives","authors":"Mohammad Qutub,&nbsp;Amol Tatode,&nbsp;Tanvi Premchandani,&nbsp;Jayshree Taksande,&nbsp;Dadaso Mane,&nbsp;Milind Umekar","doi":"10.1016/j.jciso.2024.100126","DOIUrl":"10.1016/j.jciso.2024.100126","url":null,"abstract":"<div><div>Amphiphilic block copolymers (ABCs) are currently significant in pharmaceutical sciences because of their specific capability to develop various structures that are highly efficient for drug delivery. Poloxamers, sometimes referred to as Pluronic's®, are very remarkable due to their exceptional biocompatibility and adaptability. Poloxamers are a type of nonionic triblock copolymers that consist of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO) organized in a sequence of PEO-PPO-PEO. Due to this arrangement, they are able to encapsulate drugs within their hydrophobic core and self-assemble into micelles in aqueous solutions beyond certain critical micelle concentrations (CMC) and temperatures (CMTs). Understanding and optimising these systems requires a thorough comprehension of the micellisation process and its thermodynamics, which encompass the changes in free energy, enthalpy, and entropy. Differences in molecular weight and the proportion of PEO to PPO lead to the formation of several different poloxamers, each possessing unique properties and uses. This paper examines the process of micellisation, the structure of micelles, thermodynamic factors, and the importance of critical micelle concentration (CMC) and critical micelle temperature (CMT). It emphasizes the significance of these parameters in pharmaceutical formulations and drug delivery systems.</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"16 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信