Advances in Meteorology最新文献

筛选
英文 中文
The Dew Particle Interception Abilities of Typical Plants in Northeast China Plant Leaves Capture Particles in Dew 东北典型植物叶片对露珠颗粒的截留能力
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-08-18 DOI: 10.1155/2022/7157012
Yingying Xu, Yingbo Dou, Yan Yi, Xu Yang
{"title":"The Dew Particle Interception Abilities of Typical Plants in Northeast China Plant Leaves Capture Particles in Dew","authors":"Yingying Xu, Yingbo Dou, Yan Yi, Xu Yang","doi":"10.1155/2022/7157012","DOIUrl":"https://doi.org/10.1155/2022/7157012","url":null,"abstract":"The dew condensation frequency is high, and the dew amount is heavy in urban ecosystems. During the condensation process, particulate matter acts as a condensation core, playing an important role in purifying the air. At night, dew mainly condenses on plant leaf surfaces, the plant leaves settle the particles in the dew, and some of the particles are resuspended into the atmosphere in the process of dew evaporation after sunrise. This paper monitored the condensation and evaporation processes of dew on four common plants in Changchun city from June to September 2020. By analyzing the mass and size of particles on different leaves after dew condensation and evaporation, the ability of different plants to retain particles in dew was analyzed. The results showed that there was no significant difference in the TSP capture ability during dew condensation between Buxus sinica (Rehd. et Wils.) Cheng subsp. sinica var. parvifolia M. Cheng, Syringa oblata Lindl., Hemiptelea davidii (Hance) Planch., and Pinus tabuliformis Carrière, with a TSP content of 0.21 ± 0.06 μg/cm2. Coarse particulate matter is the main type of deposit in the dew condensation stage. Particulate deposition varied according to species, leaf shape, and microstructure. The proportion of TSP remaining on leaves after dew evaporation from Pinus tabuliformis Carrière, Hemiptelea davidii (Hance) Planch., Buxus sinica (Rehd. et Wils.) Cheng subsp. sinica var. parvifolia M. Cheng, and Syringa oblata Lindl. tree was 89.7 ± 3.9%, 80.6 ± 3.6%, 75.9 ± 4.5%, and 71.4 ± 3.7%, respectively. The ability of the leaves to trap fine particles was significantly higher than that for coarse particles (\u0000 \u0000 P\u0000 <\u0000 0.05\u0000 \u0000 ) after dew evaporation. The highest amount of particle captured by Syringa oblata Lindl. individual was 15.17 g/y during dew condensation, and the amount of remaining particles after dew evaporation was 10.83 g/y. This paper provides a theoretical basis for the selection of tree species for urban greening.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42395243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Land-Atmosphere Energy Exchange Characteristics in Ali of Tibetan 西藏阿里地区陆-气能量交换特征
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-08-11 DOI: 10.1155/2022/7374193
Ge Wang, Lin Han, Xingying Tang
{"title":"Land-Atmosphere Energy Exchange Characteristics in Ali of Tibetan","authors":"Ge Wang, Lin Han, Xingying Tang","doi":"10.1155/2022/7374193","DOIUrl":"https://doi.org/10.1155/2022/7374193","url":null,"abstract":"Based on the comprehensive data from the land-atmosphere interaction observation station in Ali of Tibetan in 2019, the characteristics of land-atmosphere energy exchange processes in Ali were analyzed. The results indicated that the timing of the mean intraday net radiation peak in Ali over the past 20 years has been delayed, and the month when the maximum monthly mean net radiation occurred has been delayed by about 2 months; the maximum daily mean, maximum monthly mean, minimum monthly mean, and annual mean sensible heat were 99.63 w/m2, 76.53 w/m2, 17.47 w/m2, and 46.74 w/m2, respectively, and the maximum daily mean, maximum monthly mean, minimum monthly mean, and annual mean latent heat flux were 73.27 w/m2, 36.13 w/m2, 0.67 w/m2, and 8.32 w/m2, respectively; and the monthly mean sensible heat was greater than the latent heat in all months.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46313307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning-Based English-Chinese Translation Research 基于深度学习的英汉翻译研究
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-07-14 DOI: 10.1155/2022/3208167
Yao Huang, Y. Xin
{"title":"Deep Learning-Based English-Chinese Translation Research","authors":"Yao Huang, Y. Xin","doi":"10.1155/2022/3208167","DOIUrl":"https://doi.org/10.1155/2022/3208167","url":null,"abstract":"Neural machine translation (NMT) has been bringing exciting news in the field of machine translation since its emergence. However, because NMT only employs single neural networks to convert natural languages, it suffers from two drawbacks in terms of reducing translation time: NMT is more sensitive to sentence length than statistical machine translation and the end-to-end implementation process fails to make explicit use of linguistic knowledge to improve translation performance. The network model performance of various deep learning machine translation tasks was constructed and compared in English-Chinese bilingual direction, and the defects of each network were solved by using an attention mechanism. The problems of gradient disappearance and gradient explosion are easy to occur in the recurrent neural network in the long-distance sequence. The short and long-term memory networks cannot reflect the information weight problems in long-distance sequences. In this study, through the comparison of examples, it is concluded that the introduction of an attention mechanism can improve the attention of context information in the process of model generation of the target language sequence, thus translating restore degree and fluency higher. This study proposes a neural machine translation method based on the divide-and-conquer strategy. Based on the idea of divide-and-conquer, this method identifies and extracts the longest noun phrase in a sentence and retains special identifiers or core words to form a sentence frame with the rest of the sentence. This method of translating the longest noun phrase and sentence frame separately by the neural machine translation system, and then recombining the translation, alleviates the poor performance of neural machine translation in long sentences. Experimental results show that the BLEU score of translation obtained by the proposed method has improved by 0.89 compared with the baseline method.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49131101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nitrogen Inversion Model in a Wetland Environment Based on the Canopy Reflectance of Emergent Plants 基于新生植物冠层反射率的湿地环境氮素反演模型
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-07-14 DOI: 10.1155/2022/8800371
Dongli Wu, Dongliang Zhao, Yongchao Zhu, Chao Shen, Hongxi Xue
{"title":"Nitrogen Inversion Model in a Wetland Environment Based on the Canopy Reflectance of Emergent Plants","authors":"Dongli Wu, Dongliang Zhao, Yongchao Zhu, Chao Shen, Hongxi Xue","doi":"10.1155/2022/8800371","DOIUrl":"https://doi.org/10.1155/2022/8800371","url":null,"abstract":"Reuse of reclaimed water in constructed wetlands is a promising way to conserve water resources and improve water quality, and it is playing a very important role in wetland restoration and reconstruction. This study utilized reflectance spectra of wetland vegetation to estimate nitrogen content in water in the Beijing Bai River constructed wetland, a typically constructed wetland that uses reclaimed water. Canopy reflectance spectra of two dominant plants in the wetland, including reed and cattail, were acquired using a spectrometer (350–2500 nm). Simultaneously, water samples were collected to measure water quality. To establish the appreciate relationship between total nitrogen content (TN) and reflectance spectra, both simple and multiple regression models, including simple ration spectral index (SR), normalized difference spectral index (ND), stepwise multiple linear regression (SMLR) model, and partial least squares regression (PLSR), were adopted in this study. The results showed that (1) compared with simple regression models (SR and ND), multiple regressions models (SMLR and PLSR) could provide a more accurate estimation of TN concentration in the wetland environment. Among these models, the PLSR model had the highest accuracy and was proven to be the most useful tool to reveal the relationship between the spectral reflectance of wetland plants and the total nitrogen consistency of wetland at the canopy scale. (2) The inversion effect of TN concentration in water is slightly better than that of wetland vegetation, and the reflection spectrum of the reed can predict TN concentration more accurately than that of cattail. The finding not only provides solid evidence for the potential application of remote sensing to detect water eutrophication but also enhances our understanding of the monitoring and management of water quality in urban wetlands using recycled water.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45025555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Influence of Rainfall and Evaporization Wetting-Drying Cycles on the Slope Stability 降雨和蒸发干湿循环对边坡稳定性的影响
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-07-09 DOI: 10.1155/2022/5775424
Ya Zhao
{"title":"The Influence of Rainfall and Evaporization Wetting-Drying Cycles on the Slope Stability","authors":"Ya Zhao","doi":"10.1155/2022/5775424","DOIUrl":"https://doi.org/10.1155/2022/5775424","url":null,"abstract":"The decay of soil strength and the change of soil infiltration characteristics caused by the dry and wet cycle effect generated by the rainfall-evaporation process are important factors that induce slope instability. How to consider the effect of soil strength decay and water-soil characteristic curve hysteresis effect on transient stability change of slope is the key to solve this problem. In this paper, transient stability analysis of slopes considering soil strength decay and water-soil characteristic curve hysteresis is carried out based on Geo-Studio. The results of the study showed that the change of transient safety factor of the slope caused by rainfall-evaporation dry and wet cycle process has an overall decreasing trend and the safety factor decreased by 43% compared to the initial state. The seepage characteristics of the rainfall-evaporation dry-wet cycle have certain regularity. The location of slope measurement points has a greater influence on the magnitude of the pore pressure change: foot of slope > middle of slope > top of slope. Also, there is a significant response hysteresis in the change of pore pressure with increasing depth at the same location. The rainfall intensity has a certain influence on the change of slope safety factor, but its influence is not obvious when the rainfall intensity exceeds a certain amount.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45797496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of Observed Trends in Daily Temperature and Precipitation Extremes in Different Agroecologies of Gurage Zone, Southern Ethiopia 埃塞俄比亚南部Gurage地区不同农业生态的日温度和降水极值观测趋势分析
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-07-07 DOI: 10.1155/2022/4745123
Zelalem Dendir, B. Birhanu
{"title":"Analysis of Observed Trends in Daily Temperature and Precipitation Extremes in Different Agroecologies of Gurage Zone, Southern Ethiopia","authors":"Zelalem Dendir, B. Birhanu","doi":"10.1155/2022/4745123","DOIUrl":"https://doi.org/10.1155/2022/4745123","url":null,"abstract":"Ethiopian climate-sensitive economy is particularly vulnerable to the effects of climate-related extreme events. Thus, examining extreme daily precipitation and temperature in the context of climate change is a critical factor in advocating climate change adaptation at the local scales. Spatial changes of climate indices for extreme precipitation and temperatures were conducted for the period 1986–2016 in three different agroecologies of the Gurage zone, Southern Ethiopia. The study used the Mann–Kendall (MK) test and Sen’s slope estimator to estimate the trend and magnitude of changes in precipitation and temperature. The analysis from the observation indicates that there had been a consistent warming trend and inconsistent changes in precipitation extremes in the study agroecologies. A statistically significant increase in the numbers of warm days and nights and a statistically significant reduction in the numbers of cold days and nights were observed in most of the agroecologies. The duration of extreme trend showed inconsistency; however, a drier condition is observed in lowland agroecology. Therefore, based on the findings of this study, appropriate climate adaptation efforts are needed at the local scale.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48729012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Review of the Impacts of Climate Change on Tourism in the Arid Areas: A Case Study of Xinjiang Uygur Autonomous Region in China 气候变化对干旱地区旅游业影响的研究——以新疆维吾尔自治区为例
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-07-02 DOI: 10.1155/2022/8768542
Shijin Wang, Xing-gang Ma, Xie Jia
{"title":"A Review of the Impacts of Climate Change on Tourism in the Arid Areas: A Case Study of Xinjiang Uygur Autonomous Region in China","authors":"Shijin Wang, Xing-gang Ma, Xie Jia","doi":"10.1155/2022/8768542","DOIUrl":"https://doi.org/10.1155/2022/8768542","url":null,"abstract":"Tourism is more sensitive and susceptible in global arid regions to climate change than other sectors, and climate change mainly affects the behavior of tourists, selection of tourist destinations, tourism resources, and tourism safety. China’s Xinjiang Uygur Autonomous Region (XUAR) is a representative area of the global arid region. To review its comprehensive impacts of climate change on tourism has indicative significance for the global arid region tourism industry to cope with climate change impacts. On the whole, the impacts of climate change on tourism in the XUAR will coexist with opportunities and challenges both at present and in the future. The XUAR is experiencing or will experience climatic process of warming and wetting. For the tourism climate comfort and extension of suitable travel period, the opportunities far outweigh the risks (high reliability). However, future climate change is expected to have great negative effects on cultural heritages, glacier and snow resources, and agricultural landscapes in arid areas of northwest China (high reliability). The above impacts are potential and long-term, and the measures should be taken as soon as possible to mitigate and adapt to climate change challenges to tourism.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46716592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of MODIS Deep Blue Collection 6.1 Aerosol Optical Depth Products Over Indonesia: Spatiotemporal Variations and Aerosol Types 印尼上空MODIS深蓝采集6.1气溶胶光学深度产品的性能:时空变化和气溶胶类型
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-06-28 DOI: 10.1155/2022/7544310
R. Hutauruk, D. S. Permana, I. A. Rangga, Cici Sucianingsih, T. A. Nuraini
{"title":"Performance of MODIS Deep Blue Collection 6.1 Aerosol Optical Depth Products Over Indonesia: Spatiotemporal Variations and Aerosol Types","authors":"R. Hutauruk, D. S. Permana, I. A. Rangga, Cici Sucianingsih, T. A. Nuraini","doi":"10.1155/2022/7544310","DOIUrl":"https://doi.org/10.1155/2022/7544310","url":null,"abstract":"This study aims to evaluate the performance of the long-term Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) Collection 6.1 (C6.1) in determining the spatiotemporal variation of aerosol optical depth (AOD) and aerosol types over Indonesia. For this purpose, monthly MODIS DB AOD datasets are directly compared with Aerosol Robotic Network (AERONET) Version 3 Level 2.0 (cloud-screened and quality-assured) monthly measurements at 8 sites throughout Indonesia. The results indicate that MODIS DB AOD retrievals and AERONET AOD measurements have a high correlation in Sumatra Island (i.e., Kototabang (r = 0.88) and Jambi (r = 0.9)) and Kalimantan Island (i.e., Palangkaraya (r = 0.89) and Pontianak (r = 0.92)). However, the correlations are low in Bandung, Palu, and Sorong. In general, MODIS DB AOD tends to overestimate AERONET AOD at all sites by 16 to 61% and can detect extreme fire events in Sumatra and Kalimantan Islands quite well. Aerosol types in Indonesia mostly consist of clean continental, followed by biomass burning/urban industrial and mixed aerosols. Palu and Sorong had the highest clean continental aerosol contribution (90%), while Bandung had the highest biomass burning/urban-industrial aerosol contribution to atmospheric composition (93.7%). For mixed aerosols, the highest contribution was found in Pontianak, with a proportion of 48.4%. Spatially, the annual mean AOD in the western part of Indonesia is higher than in the eastern part. Seasonally, the highest AOD is observed during the period of September–November, which is associated with the emergence of fire events.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42555163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Meteorological Drought Monitoring Based on Satellite CHIRPS Product over Gamo Zone, Southern Ethiopia 基于卫星CHIRPS产品的埃塞俄比亚南部加莫地区气象干旱监测
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-06-28 DOI: 10.1155/2022/9323263
Amba Shalishe, A. Bhowmick, Kumneger Elias
{"title":"Meteorological Drought Monitoring Based on Satellite CHIRPS Product over Gamo Zone, Southern Ethiopia","authors":"Amba Shalishe, A. Bhowmick, Kumneger Elias","doi":"10.1155/2022/9323263","DOIUrl":"https://doi.org/10.1155/2022/9323263","url":null,"abstract":"Drought is a frequent occurrence in semidesert areas of southern Ethiopia that significantly affect regional, social, economic, and environmental conditions. Lack of rainfall monitoring network, instrument measurement, and failure are major bottlenecks for agro-and hydroclimate research in developing countries. The objectives of this study were to evaluate the performance of CHIRPS rainfall product and to assess meteorological drought using SPI for the period 2000 to 2020 over Gamo Zone, southern Ethiopia. The performance of CHIRPS v2 was assessed and compared to station observations (2000–2020) in the study domain to derive SPI on a three-month timescale. The Pearson correlation coefficient (R), bias, probability of bias (PBias), mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and Nash simulation efficiency (NSE) values across the zone for CHIRPS v2 were found to be 0.88, 1.02, 2.56, 0.25, 22.41, 33.14, and 0.77, respectively. The results indicate that CHIRPS performed good ability to analyze the drought characteristics in the Gamo Zone. The spatial and temporal distribution method of meteorological drought has been evaluated using the Climate Data Tool (CDT). The Standardized Precipitation Index (SPI) was computed using the gamma distribution method. The magnitude of (SPI-3) of monthly and seasonal (MAM) meteorological drought in the zone from 2000 to 2020. The result shows that the known historic drought years (2014, 2015, 2010, 2009, and 2008) were indicated very well. Furthermore, sever and extreme droughts were observed in 2008 and 2009 with drought duration of 6.7 and 6.3, respectively, in most areas of the zone. Hence, this study revealed that CHIRPS can be a useful supplement for measuring rainfall data to estimate rainfall and drought monitoring in this region.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42292128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluation of Hydropower Generation and Reservoir Operation under Climate Change from Kesem Reservoir, Ethiopia 埃塞俄比亚Kesem水库气候变化下的水力发电和水库运行评价
IF 2.9 4区 地球科学
Advances in Meteorology Pub Date : 2022-06-22 DOI: 10.1155/2022/3336257
Kinfe Bereda Mirani, Mesfin Amaru Ayele, T. K. Lohani, Tigistu Yisihak Ukumo
{"title":"Evaluation of Hydropower Generation and Reservoir Operation under Climate Change from Kesem Reservoir, Ethiopia","authors":"Kinfe Bereda Mirani, Mesfin Amaru Ayele, T. K. Lohani, Tigistu Yisihak Ukumo","doi":"10.1155/2022/3336257","DOIUrl":"https://doi.org/10.1155/2022/3336257","url":null,"abstract":"Climate changes significantly cause the precipitation deficiency and in turn reduce the inflow amount in reservoir affecting hydroelectric power generation. The primary objective of this study was to evaluate hydropower generation and reservoir operation under climate change from Kesem reservoir. Recent Representative Pathway (RCP) scenarios were used to evaluate the impact of climate change on power generation. Power transformation equation and variance scaling approach were amalgamated to adjust the bias correction of precipitation and temperature, respectively. Bias, root mean square error, and coefficient of variation were used to check the accuracy of projected rainfall. The base and future precipitation, temperature, and evaporation trend was analysed using the Mann–Kendall test. The flow calibration and validation were carried out by the Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS), and hydropower generation was evaluated with reservoir simulation model (MODSIM 8.1) under climate scenarios. The performance of the model was found good with Nash–Sutcliffe coefficient (NSE) of 0.72 and coefficient of determination (R2) of 0.73 for calibration and NSE of 0.74 and R2 of 0.75 for validation. Projected future climate scenarios predicted increasing and decreasing trend of temperature and precipitation, respectively. For RCP4.5 climate scenario, the average energy generation is likely to decrease by 0.64% and 0.82% in both short-term (2021–2050) and long-term (2051–2080), respectively. In case of RCP8.5 climate scenario, the average energy generation will be decreased by 1.06% and 1.35% for short-term and long-term, respectively. Remarkable reduction of energy generation was revealed in RCP8.5 with relation to RCP4.5 scenario. This indicates that there will be high energy fluctuation and decreasing trend in the future energy generation. The research finding is crucial for decision-makers, power authorities, governmental and nongovernmental organizations, and watershed management agencies to take care for sustainability in the future hydropower generation in the Kesem reservoir.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45441436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信