R. Hutauruk, D. S. Permana, I. A. Rangga, Cici Sucianingsih, T. A. Nuraini
{"title":"Performance of MODIS Deep Blue Collection 6.1 Aerosol Optical Depth Products Over Indonesia: Spatiotemporal Variations and Aerosol Types","authors":"R. Hutauruk, D. S. Permana, I. A. Rangga, Cici Sucianingsih, T. A. Nuraini","doi":"10.1155/2022/7544310","DOIUrl":null,"url":null,"abstract":"This study aims to evaluate the performance of the long-term Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) Collection 6.1 (C6.1) in determining the spatiotemporal variation of aerosol optical depth (AOD) and aerosol types over Indonesia. For this purpose, monthly MODIS DB AOD datasets are directly compared with Aerosol Robotic Network (AERONET) Version 3 Level 2.0 (cloud-screened and quality-assured) monthly measurements at 8 sites throughout Indonesia. The results indicate that MODIS DB AOD retrievals and AERONET AOD measurements have a high correlation in Sumatra Island (i.e., Kototabang (r = 0.88) and Jambi (r = 0.9)) and Kalimantan Island (i.e., Palangkaraya (r = 0.89) and Pontianak (r = 0.92)). However, the correlations are low in Bandung, Palu, and Sorong. In general, MODIS DB AOD tends to overestimate AERONET AOD at all sites by 16 to 61% and can detect extreme fire events in Sumatra and Kalimantan Islands quite well. Aerosol types in Indonesia mostly consist of clean continental, followed by biomass burning/urban industrial and mixed aerosols. Palu and Sorong had the highest clean continental aerosol contribution (90%), while Bandung had the highest biomass burning/urban-industrial aerosol contribution to atmospheric composition (93.7%). For mixed aerosols, the highest contribution was found in Pontianak, with a proportion of 48.4%. Spatially, the annual mean AOD in the western part of Indonesia is higher than in the eastern part. Seasonally, the highest AOD is observed during the period of September–November, which is associated with the emergence of fire events.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/7544310","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
This study aims to evaluate the performance of the long-term Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) Collection 6.1 (C6.1) in determining the spatiotemporal variation of aerosol optical depth (AOD) and aerosol types over Indonesia. For this purpose, monthly MODIS DB AOD datasets are directly compared with Aerosol Robotic Network (AERONET) Version 3 Level 2.0 (cloud-screened and quality-assured) monthly measurements at 8 sites throughout Indonesia. The results indicate that MODIS DB AOD retrievals and AERONET AOD measurements have a high correlation in Sumatra Island (i.e., Kototabang (r = 0.88) and Jambi (r = 0.9)) and Kalimantan Island (i.e., Palangkaraya (r = 0.89) and Pontianak (r = 0.92)). However, the correlations are low in Bandung, Palu, and Sorong. In general, MODIS DB AOD tends to overestimate AERONET AOD at all sites by 16 to 61% and can detect extreme fire events in Sumatra and Kalimantan Islands quite well. Aerosol types in Indonesia mostly consist of clean continental, followed by biomass burning/urban industrial and mixed aerosols. Palu and Sorong had the highest clean continental aerosol contribution (90%), while Bandung had the highest biomass burning/urban-industrial aerosol contribution to atmospheric composition (93.7%). For mixed aerosols, the highest contribution was found in Pontianak, with a proportion of 48.4%. Spatially, the annual mean AOD in the western part of Indonesia is higher than in the eastern part. Seasonally, the highest AOD is observed during the period of September–November, which is associated with the emergence of fire events.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.