Deep Learning-Based English-Chinese Translation Research

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Yao Huang, Y. Xin
{"title":"Deep Learning-Based English-Chinese Translation Research","authors":"Yao Huang, Y. Xin","doi":"10.1155/2022/3208167","DOIUrl":null,"url":null,"abstract":"Neural machine translation (NMT) has been bringing exciting news in the field of machine translation since its emergence. However, because NMT only employs single neural networks to convert natural languages, it suffers from two drawbacks in terms of reducing translation time: NMT is more sensitive to sentence length than statistical machine translation and the end-to-end implementation process fails to make explicit use of linguistic knowledge to improve translation performance. The network model performance of various deep learning machine translation tasks was constructed and compared in English-Chinese bilingual direction, and the defects of each network were solved by using an attention mechanism. The problems of gradient disappearance and gradient explosion are easy to occur in the recurrent neural network in the long-distance sequence. The short and long-term memory networks cannot reflect the information weight problems in long-distance sequences. In this study, through the comparison of examples, it is concluded that the introduction of an attention mechanism can improve the attention of context information in the process of model generation of the target language sequence, thus translating restore degree and fluency higher. This study proposes a neural machine translation method based on the divide-and-conquer strategy. Based on the idea of divide-and-conquer, this method identifies and extracts the longest noun phrase in a sentence and retains special identifiers or core words to form a sentence frame with the rest of the sentence. This method of translating the longest noun phrase and sentence frame separately by the neural machine translation system, and then recombining the translation, alleviates the poor performance of neural machine translation in long sentences. Experimental results show that the BLEU score of translation obtained by the proposed method has improved by 0.89 compared with the baseline method.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/3208167","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Neural machine translation (NMT) has been bringing exciting news in the field of machine translation since its emergence. However, because NMT only employs single neural networks to convert natural languages, it suffers from two drawbacks in terms of reducing translation time: NMT is more sensitive to sentence length than statistical machine translation and the end-to-end implementation process fails to make explicit use of linguistic knowledge to improve translation performance. The network model performance of various deep learning machine translation tasks was constructed and compared in English-Chinese bilingual direction, and the defects of each network were solved by using an attention mechanism. The problems of gradient disappearance and gradient explosion are easy to occur in the recurrent neural network in the long-distance sequence. The short and long-term memory networks cannot reflect the information weight problems in long-distance sequences. In this study, through the comparison of examples, it is concluded that the introduction of an attention mechanism can improve the attention of context information in the process of model generation of the target language sequence, thus translating restore degree and fluency higher. This study proposes a neural machine translation method based on the divide-and-conquer strategy. Based on the idea of divide-and-conquer, this method identifies and extracts the longest noun phrase in a sentence and retains special identifiers or core words to form a sentence frame with the rest of the sentence. This method of translating the longest noun phrase and sentence frame separately by the neural machine translation system, and then recombining the translation, alleviates the poor performance of neural machine translation in long sentences. Experimental results show that the BLEU score of translation obtained by the proposed method has improved by 0.89 compared with the baseline method.
基于深度学习的英汉翻译研究
神经机器翻译(NMT)自诞生以来,一直在机器翻译领域带来令人兴奋的消息。然而,由于NMT只使用单个神经网络来转换自然语言,因此在减少翻译时间方面存在两个缺点:NMT对句子长度比统计机器翻译更敏感,端到端的实现过程未能明确利用语言知识来提高翻译性能。在英汉双语方向上,构建并比较了各种深度学习机器翻译任务的网络模型性能,并利用注意力机制解决了每个网络的缺陷。递归神经网络在长距离序列中容易出现梯度消失和梯度爆炸的问题。短期和长期记忆网络不能反映长距离序列中的信息权重问题。本研究通过实例比较得出结论,在目标语序列的模型生成过程中,引入注意机制可以提高对上下文信息的注意,从而提高翻译的还原度和流利度。本文提出了一种基于分译策略的神经机器翻译方法。该方法基于分而治之的思想,识别并提取句子中最长的名词短语,并保留特殊的标识符或核心词,与句子的其余部分形成句子框架。这种通过神经机器翻译系统分别翻译最长的名词短语和句子框架,然后重新组合翻译的方法,缓解了神经机器翻译在长句中表现不佳的问题。实验结果表明,与基线方法相比,该方法获得的翻译BLEU分数提高了0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信